Minggu, 18 Oktober 2009

Potensial (gaya gerak listrik) sel

| | 0 komentar

Andaikan kita mengukur perbedaan potensial V antara dua elektroda dengan menggunakan potensiometer ketika arus listrik yang dihasilkan mengalir. Nilai limit atau perbedaan potensial bila arus listriknya nol disebut dengan gaya gerak listrik (potensial) sel.
Perbedaan potensial yang diamati bervariasi dengan jenis bahan elektroda dan konsentrasi serta temperatir larutan elektrolit. Untuk sel Daniell, potensial pada 25 C° adalah 1,10 V ketika konsentrasi ion Zn2+ dan Cu2+ sama.
a. Standarisasi potensial
Bila elektroda Cu/CuSO4 dalam sel Daniell diganti dengan elektroda Ag/AgNO3, potensial sel adalah 1,56 V, yang lebih besar dari potensial sel Daniell. Jadi potensial sel bervariasi dengan cukup besar bergantung jenis bahan elektroda. Jadi, metoda berikut digunakan untuk membandingkan potensial berbagai jenis sel.
Standardisasi potensial
1. Konsentrasi dan temperatur larutan elektrolit dipertahankan pada konsisi tetap, yakni 1 molar dan 25 C (S.T.P). Nilai percobaan diekstrapolasikan ke nilai standar ini.
2. Sebuah sel disusun dengan elektroda umum yang berperan sebagai elektroda standar.
3. Potensial sel ditentukan termasuk tandanya (yakni elektroda mana yang akan berperan sebagai elektroda positif ditentukan).
4. Berdasarkan definisi, kontribusi elektroda standar pada potensial sel adalah nol. Maka perbedaan potensial adalah nilai khas elektroda tersebut. Nilai ini yang disebut dengan potensial elektroda normal elektroda tersebut.
5. Potensial sel sama dengan jumlah potensial standar elektrodanya.
Dalam elektroda hidrogen normal, yang terdiri atas hidrogen dan asam khlorida, H2 (g,1 atm)/H+ (HCl, 1 mol dm-3), digunakan sebagai elektroda standar. Dalam elektroda ini, gas hidrogen berkontak dengan larutan yang mengandung proton (biasanya asam khlorida). Karena hidrogen bukan konduktor, pelat platina teraktivasi digunakan sebagai pelat elektroda. Reaaksi elektrodanya adalah
1/2 H2 H+ + e- (10.13)
Diasumsikan bahwa platina akan mengkatalisis pemecahan molekul hidrogen menjadi atom hodrogen. Kemudian sangat besar kemungkinannya atom hidrogen ini akan terlibat dalam reaksi elektroda.
b. Potensial elektroda normal
Potensial sel yang terdiri atas pasangan elektroda hidrogen normal (H/H+) dan elektroda Zn/ZnSO4 dinormalkan (Gambar 10.3) adalah -0,763 V. Catat bahwa reaksi elektroda yang terjadi adalah
1/2 H2 + 1/2 Zn2+–> H++ 1/2 Zn (10.14)
Bukan.
H++ 1/2 Zn –> 1/2 H2 + 1/2 Zn2+ (10.15)
Namun, dengan memperhatikan kecenderungan ionisasi, yang bawah yang lebih mungkin terjadi. Nilai negatif potensial menunjukkan bahwa kesukaran terjadinya reaksi pertama.

Gambar 10.3 Potensial elektroda standar. Dari percobaan ini, potensial elektroda reaksi
1/2 H2 + 1/2 Zn2 + –> H+ + 1/2 Zn dapat diperoleh. Potensial elektroda hidrogen didefinisikan nol.
Sel yang dibuat dengan pasangan Cu/CuSO4 dan elektroda hidrogen normal berpotensial +0,337 V.
Reaksi total selnya adalah.
1/2 H2 + 1/2 Cu2+–> H+ + 1/2 Cu (10.16)
Dari sudut pandang kemudahan ionisasi, reaksi lebih mungkin dalam arah sebaliknya. Nilai positif potensial terukur menunjukkan hal ini. Nilai terukur potensial sel Daniell, 1,1 V, berkaitan dengan perbedaan potensial elektroda normal dua elektroda. Jadi,
+0,337 – (-0,763) = +1,100 (V) (10.17)
Potensial elektroda normal elektroda-elektroda penting diberikan di Tabel 10.2.

Berdasarkan conth di atas, diharapkan bahwa elektroda yang terbuat dari logam dengan kecenderungan ionisasi besar akan memiliki potensial elektroda normal negatif besar dan elektroda yang terbuta dari halogen dengan keelektronegativan besar akan memiliki potensial elektroda positiif. Dan faktanya memang potensial elektroda berikut
Li+ + e- Li … (10.18)
F2(g) + 2e- 2F- … (10.19)
Berturut-turut adalah -3,045 V dan +2,87 V. Anda dapat memahami strategi untuk membuat sel dengan potensial tinggi. Kombinasi elektroda Li dan elektroda fluorin adalah salah satu kemungkinan untuk mencapai tujuan ini. Jelas diperlukan kehati-hatian untuk memastikan sel seperti ini aman. Elektroda logam alkali/alkali tanah digunakan dalam sel alkali, yang digunakan dengan meluas.
c. Persamaan Nernst
Kebergantungan potensial elektroda pada konsentrasi telah dibahas. Untuk persamaan sel umum,
aA +bB xX + yY (10.20)
potensial sel diberikan oleh persamaan Nernst.
E = Eθ – (RT/nF) ln([X]x[Y]y)/([A]a[B]b) (10.21)
Eθ adalah potensial elektroda normal (potensial elektroda semua zat dalam reaksi sel dalam keadaan standar), n jumlah elektro yang terlibat dalam reaksi, F adalah tetapan Faraday, [A]. dsb, adalah konsentrasi molar masing-masing ion yang terlibat.
Contoh soal 10.6 persamaan Nernst
K2Cr2O7/ H2SO4 adalah oksidan yang dikenal baik, dan reaksi elektrodanya adalah
Cr2O72- + 14H+ + 6e-–> 2Cr3+ + 7H2O (Eθ = 1,29 V)
Ini berarti bahwa potensial sel, dan dengan demikian kekuatan oksidan, secara substansial menurun pada kondisi netral. Bila reaksi sel dalam keadaan kesetimbangan, maka E = 0. Akibatnya,
E = Eθ -(RT/nF) lnK (10.22)
K adalah konstanta kesetimbangan untuk persamaan berikut.
K = ([X]x[Y]y/[A]a[B]b)eq (10.23)
subskrip eq menunjukkan konsentrasi molar pada nilai keadaan setimbang.
Jelas bahwa konstanta kesetimbangan dapat ditentukan dengan pengukuran potensial dengan bantuan persamaan Nernst. Lebih lanjut, bila konsentrasi larutan elektrolit berbeda, potensial tetap akan dihasilkan walaupun dua elektroda yang sama digunakan. Reaksi yang berlangsung dalam sel konsentrasi dalam arah yang akan menyamakan perbedaan dalam konsentrasi dalam dua elektroda. Arah ini cocok dengan prinsip Le Chatelier.
By : Joko Akhiriyanto
Read more...

Sel dalam Praktek

| | 0 komentar

Sel-sel yang digunakan dalam praktek

a. Baterai timbal

Nilai sel terletak pada kegunaannya. Di anara berbagai sel, sel timbal (aki) telah digunakan sejak 1915. Berkat baterai ini, mobil dapat mencapai mobilitasnya, dan akibatnya menjadi alat transportasi terpenting saat ini. Baterai timbal dapat bertahan kondisi yang ekstrim (temperatur yang bervariasi, shock mekanik akibat jalan yang rusak, dsb) dan dapat digunakan secara kontinyu beberapa tahun.

Dalam baterai timbal, elektroda negatif adalah logam timbal dan elektroda positifnya adala timbal yang dilapisi timbal oksida, dan kedua elektroda dicelupkan dalam asam sulfat, larutan elektrolitnya. Reaksi elektrodanya adalah sebagai berikut:
Reaksi elektroda baterai timbal
Elektroda negatif: Pb + HSO4 – –> PbSO4 + H+ +2e- (10.24)
Elektroda positif: PbO2 + HSO4 – + 3H+ +2e- –> PbSO4 + 2H2O (10.25)
Reaksi total: Pb(s) + PbO2(s) + 2H+(aq) + 2HSO4 -(aq) –> 2PbSO4(s) + 2H2O(l) (10.26)

Potensial satu sel sekitar 2 V, dan dalam praktek, enam sel dihubungkan dengan seri untuk mendapatkan potensial 12 V. Saat discas, asam sulfat akan dikonsumsi dan kerapatannya akan berkurang dari nilai awal 1,28 g cm-3. Jadi, dengan mengukur kerapatan larutan elektrolit, kondisi sel dapat dimonitor.

Dalam prakteknya, sebelum penurunan kerapatan larutan elektrolitnya terlalu besar, arus listrik diberikan yang akan membalik arah reaksi. Proses ini disebut mencas. Sel yang dapat dicas disebut sel reversibel dan yang tidak dapat dicas (seperti sel kering) disebut sel ireversibel.

Selama dicas, timbal sulfat akan terdekomposisi menjadi timbal dan timbal oksida, dan asam sulfat yang dikonsumsi akan dihasilkan kembali. Air yang terbentuk akan digunakan kembali. Namun, air cenderung menguap, dan reaksi samping, elektrolisis air, yang pasti menyertai, dan dengan demikian penting untuk menambahkan air terdistilasi ke dalam baterai timbal. Baru-baru ini jenis baru elektroda yang terbuta dari paduan timbal dan kalsium, yang dapat mencegah elektrolisis air telah dikembangkan. Baterai modern dengan jenis elektroda ini adalah sistem tertutup dan disebut dengan baterai penyimpan tertutup yang tidak memerlukan penambahan air.
b. Sel lain

Sel Leclanché ditemukan oleh insinyur Perancis Georges Leclanché (1839-1882) lebih dari seratus tahun yang lalu. Berbagai usaha peningkatan telah dilakukan sejak itu, tetapi, yang mengejutkan adalah desain awal tetap dipertahankan, yakni sel kering mangan.

Sel kering mangan terdiri dari bungkus dalam zink sebagai elektroda negatif, batang karbon (grafit) sebagai elektroda positif dan pasta MnO2 dan NH4Cl yang berperan sebagai larutan elektrolit (Gambar 10.4).



Gambar 10.4 Struktur sel kering mangan. Walaupun digunakan paling meluas, detail reaksi elektrodanya
sampai saat ini belum jelas.

Elektroda negatif: Zn –> Zn2+ + 2e- (10.27)

Elektroda positif: 2MnO2 + H2O + 2e-–> Mn2O3 + 2OH- (10.28)

Potensial sel kering mangan sekitar 1,5 V. Dalam sel kering alkali, padatan KOH atau NaOH digunakan sebagai ganti NH4Cl. Reaksi elektrodanya adalah.

Elektroda negatif: Zn + 2OH-–> ZnO + H2O + 2e- (10.29)

Elektroda positif: 2MnO2 + H2O + 2e-–> Mn2O3 + 2OH- (10.30)

Umur sel kering mangan diperpendek oleh korosi zink akibat keasaman NH4Cl. Sel kering alkali bebas masalah ini karena di dalamnya bersifat basa. Jadi umur sel kering alkali lebih panjang.

Mirip dengan baterai timbal, sel nikel-kadmium juga reversibel. Lebih lanjut, dimungkinkan untuk membuat sel nikel-kadmium lebih kecil dan lebih ringan daripada sel timbal. Jadi sel ini digunakan sebagai catu daya alat-alat portabel. Reaksi elektrodanya adalah

Elektroda negatif: Cd + 2OH-–> Cd(OH)2 + 2e- (10.31)

Elektroda positif: NiO2 + 2H2O + 2e-–> Ni(OH)2 + 2OH- (10.32)
c. Sel Bahan Bakar

Desaian sel bahan bakar sedemikian sehingga reaktannya secara kontinyu diberikan ke sel. Sel bahan bakar digunakan dalam proyek Apollo menggunakan kalor pembentukan air dari hidrogen dan oksigen. Biasanya kalor pembentukan dibuang sebagai panas. Dalam sel bahan bakr energi termal diubah menjadi energi listrik. Reaksi elektrodanya adalah:

Elektroda negatif: 2H2 + 4OH-–> 4H2O + 4e- (10.33)

Elektroda positif: O2 + 2H2O + 4e-–> 4OH- (10.34)

Reaksi total: 2H2 + O2 –> 2H2O (10.35)

Struktur sel bahan bakar ditunjukkan di Gambar 10.5.



Gambar 10.5 Struktur sel bahan bakar. Kalor pembakaran yang dihasilkan dari reaksi oksigen dan hidrogen diubah menjadi energi listrik.

Walaupun sejumlah besar tenaga dan dana telah dipompakan ke proyek ini, sampai saat ini el bahan bakar yang ekonomis belum dapat dibuat. Namun, di masa depan, besar kemungkinan sel bahan bakar akan digunakan praktis bila dan hanya bila persediaan hidrogen yang stabil dan murah dapat direalisasikan. Studi di arah ini kini sedang digalakkan.

Posting By : Panji Kusuma Yudha
Read more...