Senin, 28 Desember 2009

Peristiwa dan limbah yang terjadi dikampus Universitas Mercu Buana

| | 0 komentar

Urin
Urin atau air seni atau air kencing adalah cairan sisa yang diekskresikan oleh ginjal yang kemudian akan dikeluarkan dari dalam tubuh melalui proses urinasi. Eksreksi urin diperlukan untuk membuang molekul-molekul sisa dalam darah yang disaring oleh ginjal dan untuk menjaga homeostasis cairan tubuh. Namun, ada juga beberapa spesies yang menggunakan urin sebagai sarana komunikasi olfaktori. Urin disaring di dalam ginjal, dibawa melalui ureter menuju kandung kemih, akhirnya dibuang keluar tubuh melalui uretra.

Sejarah
Warna kuning keemasan dalam urin pernah dianggap berasal dari emas. Para ahli kimia menghabiskan banyak waktu untuk mengekstrak emas dari urin yang akhirnya justru menghasilkan white phosporous, yang ditemukan oleh ahli kimia Jerman, Hennig Brand di tahun 1669 ketika ia sedang mendistilasi urin yang difermentasikan. Pada tahun 1773, ahli kimia Perancis, Hilaire Rouelle, menemukan urea ketika ia mendidihkan urin hingga kering.
Komposisi
Urin terdiri dari air dengan bahan terlarut berupa sisa metabolisme (seperti urea), garam terlarut, dan materi organik. Cairan dan materi pembentuk urin berasal dari darah atau cairan interstisial. Komposisi urin berubah sepanjang proses reabsorpsi ketika molekul yang penting bagi tubuh, misal glukosa, diserap kembali ke dalam tubuh melalui molekul pembawa. Cairan yang tersisa mengandung urea dalam kadar yang tinggi dan berbagai senyawa yang berlebih atau berpotensi racun yang akan dibuang keluar tubuh. Materi yang terkandung di dalam urin dapat diketahui melalui urinalisis. Urea yang dikandung oleh urin dapat menjadi sumber nitrogen yang baik untuk tumbuhan dan dapat digunakan untuk mempercepat pembentukan kompos. Diabetes adalah suatu penyakit yang dapat dideteksi melalui urin. Urin seorang penderita diabetes akan mengandung gula yang tidak akan ditemukan dalam urin orang yang sehat.

proses pembentukan urin
PROSES PEMBENTUKAN URINE

Ginjal berperan dalam proses pembentukan urin yang terjadi melalui serangkaian proses, yaitu: penyaringan, penyerapan kembali dan augmentasi.
1. Penyaringan (filtrasi)
Proses pembentukan urin diawali dengan penyaringan darah yang terjadi di kapiler glomerulus. Sel-sel kapiler glomerulus yang berpori (podosit), tekanan dan permeabilitas yang tinggi pada glomerulus mempermudah proses penyaringan.
Selain penyaringan, di glomelurus juga terjadi penyerapan kembali sel-sel darah, keping darah, dan sebagian besar protein plasma. Bahan-bahan kecil yang terlarut di dalam plasma darah, seperti glukosa, asam amino, natrium, kalium, klorida, bikarbonat dan urea dapat melewati saringan dan menjadi bagian dari endapan.
Hasil penyaringan di glomerulus disebut filtrat glomerolus atau urin primer, mengandung asam amino, glukosa, natrium, kalium, dan garam-garam lainnya
2. Penyerapan kembali (reabsorbsi)
Bahan-bahan yang masih diperlukan di dalam urin pimer akan diserap kembali di tubulus kontortus proksimal, sedangkan di tubulus kontortus distal terjadi penambahan zat-zat sisa dan urea.
Meresapnya zat pada tubulus ini melalui dua cara. Gula dan asam amino meresap melalui peristiwa difusi, sedangkan air melalui peristiwa osmosis. Penyerapan air terjadi pada tubulus proksimal dan tubulus distal.
Substansi yang masih diperlukan seperti glukosa dan asam amino dikembalikan ke darah. Zat amonia, obat-obatan seperti penisilin, kelebihan garam dan bahan lain pada filtrat dikeluarkan bersama urin.
Setelah terjadi reabsorbsi maka tubulus akan menghasilkan urin sekunder, zat-zat yang masih diperlukan tidak akan ditemukan lagi. Sebaliknya, konsentrasi zat-zat sisa metabolisme yang bersifat racun bertambah, misalnya urea.
3. Augmentasi
Augmentasi adalah proses penambahan zat sisa dan urea yang mulai terjadi di tubulus kontortus distal.
Dari tubulus-tububulus ginjal, urin akan menuju rongga ginjal, selanjutnya menuju kantong kemih melalui saluran ginjal. Jika kantong kemih telah penuh terisi urin, dinding kantong kemih akan tertekan sehingga timbul rasa ingin buang air kecil. Urin akan keluar melalui uretra.
Komposisi urin yang dikeluarkan melalui uretra adalah air, garam, urea dan sisa substansi lain, misalnya pigmen empedu yang berfungsi memberi warna dan bau pada urin.
Fungsi
Fungsi utama urin adalah untuk membuang zat sisa seperti racun atau obat-obatan dari dalam tubuh.
Anggapan umum menganggap urin sebagai zat yang "kotor". Hal ini berkaitan dengan kemungkinan urin tersebut berasal dari ginjal atau saluran kencing yang terinfeksi, sehingga urinnya pun akan mengandung bakteri. Namun jika urin berasal dari ginjal dan saluran kencing yang sehat, secara medis urin sebenarnya cukup steril dan hampir bau yang dihasilkan berasal dari urea. Sehingga bisa diakatakan bahwa urin itu merupakan zat yang steril
Urin dapat menjadi penunjuk dehidrasi. Orang yang tidak menderita dehidrasi akan mengeluarkan urin yang bening seperti air. Penderita dehidrasi akan mengeluarkan urin berwarna kuning pekat atau cokelat.
Terapi urin Amaroli adalah salah satu usaha pengobatan tradisional India, Ayurveda.
Kegunaan lain
Seorang Doktor sedang bereksperimen menggunakan urin
Dukun Aztec menggunakan urin untuk membasuh luka luar sebagai pencegah infeksi dan diminum untuk meredakan sakit lambung dan usus.
Bangsa Romawi kuno menggunakan urin sebagai pemutih pakaian.
Di Siberia, orang Kroyak meminum urin orang yang telah mengkonsumsi fly agaric (sejenis jamur beracun yang menyebabkan halusinasi bahkan kematian) atau sejenisnya untuk berkomunikasi dengan roh halus.
Dahulu di Jepang, urin dijual untuk dibuat menjadi pupuk.
Penggunaan urin sebagai obat telah dilakukan oleh banyak orang, diantara mereka adalah Mohandas Gandhi, Jim Morrison, dan Steve McQueen.
Read more...

Minggu, 20 Desember 2009

Bahan Lain yang Berbahaya dalam Pabrik

| | 0 komentar

Di samping pada bahan pencemar yang lepas ke udara terdapat pula bahan tertentu yang tersimpan ataupun masih dalam proses di pabrik. Bahan ini karena sifat fisis dan kimianya cukup berbahaya bagi lingkungan apabila terlepas dengan sengaja ataupun tidak sengaja. Sifat racun suatu bahan belum tentu sama dengan sifat bahaya. Bahan yang bersifat racun 591 belum tentu men imbulkan/merupakan bahaya apabila bahan tersebut digunakan secara tepat.

Sifat racun menunjukkan efek biologis atau kemampuan untuk melukai tubuh, sedang sifat bahaya menunjukkan kemungkinan kerugian. Bahan semacam ini banyak digunakan sebagai bahan penolong ataupun bahan utama pabrik kimia. Juga banyak diperoleh sebagai hasil jadi atau sampingan.

Tingkat bahaya yang ditimbulkan sebagai racun sangat membahayakan bagi manusia karena menimbulkan bermacam-macam gangguan seperti: merusakkan kulit, menyulitkan pernafasan, akut maupun kronis, bahkan dapat mematikan. Di samping itu mempunyai daya ledak, mudah terbakar, mudah menyala, sehingga pengelolaannya harus dilakukan dengan sangat herhati-hati.

Bensena, siklo hexanol, asam sulfat, amonium hidroksida,amonium sulfat, amonium nitrat, hidrogen karbon dioksida,belerang dioksida dan lain-lain yang terdiri dari 90 macam bahan,telah diklasifikasikan sebagabahan tersebut ialah tentang penyimpanan, pengolahan, pengemasan dan transportasi.

Oleh sebab itu pengawasan dan pengamanan terhadap bahan ini harus ditingkatkan dari waktu ke waktu menyangkut sifat fisis dankimia. Besarnya resiko kerusakan lingkungan akibat bahan tersebut telah banyak terbukti seperti tragedi Chernobyl di Uni Soviet ataupun Bhopal di India.Kerusakan yang ditimbulkannya selain mengancam kehidupan manusia juga akan mengancam biota lainnya baik dalam jangka panjang maupun pendek.

Kehadiran bahan beracun dan berbahaya sebagai limbah seperti mata rantai yang tak berujung. Bila kita bertolak dari sudut pengadaan akan jelas bahwa kebutuhan bahan tersebut selalu harus terpenuhi. Pengadaan dilakukan dari pabrik (produksi) maupun import. Bahan ini dalam bentuknya sesuai dengan sifatnya harus tersimpan secara baik. Lokasi penyimpanan dan wadahnya juga harus memenuhi kriteria tertentu sesuai dengan klasifikasi yang ditetapkan.

Barang-barang tersebut bila hendak dipindahkan/diangkut untuk kebutuhan proses industri membutuhkan angkutan tersendiri, mungkin dibutuhkan desain khusus alat pengangkut sampai kepada proses, sehingga menjadi barang jadi atau setengah jadi untuk kemudian dikonsumsi oleh industri hilir atau konsumen langsung. Oleh pihak industri maupun konsumen untuk sebagian terbuang sebagai limbah. Sebagai limbah yang ekonomis dapat didaur ulang dan sebagai limbah nonekonomis akan dibuang melalui proses pangolahan.

gb724

Bila dilihat dalam mata rantai tersebut, setiap titik akan menimbulkan peluang untuk mencemarkan dan atau merusakkan lingkungan. Kriteria beracun dan berbahaya akan memenuhi setiap mata rantai tersebut. Berbahaya dan beracun yang dimaksudkan karena dapat mematikan seketika atau pun beberapa lama, dapat secara biologis, dapat berakumulasi dalam lingkungan dan terakhir tidak bisa terdegradasi.

Ditinjau dari sudut pengawasan dan pengamanan bahan ini pengelolaannya harus dilaksanakan mulai dari pengadaan sampai kepada distribusi. Mengingat seringnya terjadi kecelakaan yang ditimbulkan bahan beracun dan berbahaya maka setiap pengusaha dianjurkan untuk membuat label setiap jenis bahan tersebut. Label itu menunjukkan jenis bahan, sifat kimia maupun Pengadaan Pengangkutan
Penyimpanan Limbah ekonomis.

fisikanya sehingga setiap orang dapat melihat dan membaca. Dari penjelasan. dalam label mungkin juga terdapat beberapa usaha pencegahan andaikata terjadi hal-hal yang tidak sesuai menurut prosedur.
joko akhiriyanto
Read more...

Bahan Beracun dan Berbahaya sebagai Pencemar Lingkungan

| | 0 komentar

Bahan pencemar yang terkandung dalam limbah terdiri dari bahan beracun dan atau berbahaya. Beracun artinya dapat membunuh manusia atau makhluk lain bila takarannya melebihi ukuran yang disyaratkan. Sedangkan berbahaya masuk tubuh belum tentu beracun tapi juga dapat merusakkan tubuh.

Parameter limbah menunjukkan daya racun dan berbahaya bila salah satu atau lebih dari sifat berikut ini dipenuhi, yaitu:
1.Bahannya sendiri bersifat racun
2.Mudah terbakar dan menyala
3.Oksidator dan reduktor
4.Mudah meledak
5.Bahan peledak
6.Korosif
7.Iritatif
8.Radio aktif
9.Gas bertekanan
10.Membahayakan ekosistem

Ada beberapa bahan kimia yang sangat besar manfaatnya dan dipergunakan sehari-hari tapi mempunyai daya racun yang cukup tinggi, misalnya racun yang dipergunakan untuk membunuh tikus, serangga, nyamuk, dan racun lainnya sejenis pestisida.

Sebagai bahan organik yang siap pakai senantiasa diberikan tanda-tanda peringatan ataupun catatan pada pembungkus/paching sehingga merupakan petunjuk bagi si pemakai.Bahan yang mudah menyala dan terbakar disebabkan bereaksi dengan oksigen bila dekat dengan sumber panas pada suhu atau tekanan tertentu akan menimbulkan ledakan maupun api.

Misalnya amonia (NH3) berbentuk gas tidak berwarna, baunya khas: Disimpan dalam keadaan cair pada tekanan 10 atmosfir. Titik leleh: – 77°C dan titik didih: -33°C. Akan menyala sendiri pada suhu 629°C. Gas ini mempengaruhi kulit, pencernaan dan pernafasan.Meledak dari wadahnya bila terkena nyala api.

Terjadinya pencemaran karena perlakuan yang tidak semestinya terhadap bahan tersebut, mulai dari penanganan awal sampai kepada distribusi. Kontak dengan hawa panas,wadah terbuka,kebocoran dan tercecer menyebabkan bahan ini terbuang dengan media pencemar udara ataupun air.
by : panji kusuma yudha
Read more...

Limbah Padat

| | 0 komentar

Limbah padat adalah hasil buangan industri berupa padatan,lumpur, bubur yang berasal dari sisa proses pengolahan. Limbah ini dapat dikategorikan menjadi dua bagian, yaitu limbah padat yaitu dapat didaur ulang, seperti plastik, tekstil, potongan logam dan kedua limbah padat yang tidak punya nilai ekonomis.

Bagi limbah padat yang tidak punya nilai ekonomis dapat ditangani dengan berbagai cara antara lain ditimbun pada suatu tempat, diolah kembali kemudian dibuang dan dibakar. Perlakuan limbah padat yang tidak punya nilai ekonomis sebagian besar dilakukan sebagai berikut:

1.Ditumpuk pada Areal Tertentu
Penimbunan limbah padat pada areal tertentu membutuhkan areal yang luas dan merusakkan pemandangan di sekeliling penimbunan. Penimbunan. ini mengakibatkan pembusukan yang menimbulkan bau di sekitarnya, karena adanya reaksi kimia yang rnenghasilkan gas tertentu.Dengan penimbunan, permukaan tanah menjadi rusak dan
air yang meresap ke dalam tanah mengalami kontaminasi dengan bakteri tertentu yang mengakibatkan turunnya kualitas air tanah.Pada musim kemarau timbunan mengalami kekeringan dan ini mengundang bahaya kebakaran.

2.Pembakaran
Limbah padat yang dibakar menimbulkan asap, bau dan debu. Pembakaran ini menjadi sumber pencemaran melalui udara dengan timbulnya bahan pencemar baru seperti NOR,hidrokarbon, karbon monoksida, bau, partikel dan sulfur dioksida.

3.Pembuangan
Pembuangan tanpa rencana sangat membahayakan lingkungan.Di antara beberapa pabrik membuang limbah padatnya ke sungai karena diperkirakan larut ataupun membusuk dalam air. Ini adalah perkiraan yang keliru, sebab setiap pembuangan bahan padatan apakah namanya lumpur atau buburan, akan menambah total solid dalam air sungai.

Sumber limbah padat di antaranya adalah pabrik gula, pulp dan rayon, plywood, pengawetan buah, ikan dan daging dan lainlain.Secara garis besar limbah padat dapat diklasifikasikan sebagai berikut:

1.Limbah padat yang mudah terbakar
2.Limbah padat yang sukar terbakar
3.Limbah padat yang mudah membusuk
4.Limbah berupa debu
5.Lumpur
6.Limbah yang dapat didaurulang
7.Limbah radio aktip
8.Limbah yang menimbulkan penyakit
9.Bongkaran bangunan

Berdasarkan klasifikasi limbah padat serta akibat-akibat yang ditimbulkannya sistem pengelolaan dilakukan menurut:

1.Limbah padat yang dapat ditimbun tanpa membahayakan.
2.Limbah padat yang dapat ditimbun tetapi berbahaya.
3.Limbah padat yang tidak dapat ditimbun.

Di dalam pengolahannya dilakukan melalui tiga cara yaitu pemisahan, penyusutan ukuran dan pengomposan. Dimaksud dengan pemisahan adalah pengambilan bahan tertentu kemudian diolah kembali sehingga mempunyai nilai ekonomis. Penyusutan ukuran bertujuan untuk memudahkan pengolahan limbah selanjutnya, misalnya pembakaran.

Dengan ukuran lebih kecil akan lebih mudah membawa atau membakar pada tungku pembakaran. Jadi tujuannya adalah pengurangan volume maupun berat. Pengomposan adalah proses melalui biokimia yaitu zat
organik dalam limbah dipecah sehingga menghasilkan humus yang berguna untuk memperbaiki struktur tanah. Banyak jenis limbah padat dari pabrik yang upaya pengelolaannya dilakukan menurut kriteria yang telah ditetapkan.
by : joko akhiriyanto
Read more...

Pencemaran Limbah Gas

| | 0 komentar

Kata Kunci: debu asbes, debu kapas, debu silicosis, debu stannosis, debusiderosis, Nilai ambang batas, pabrik timah putih, Pencemaran Limbah Gas
Ditulis oleh Suparni Setyowati Rahayu pada 04-06-2009

Gas tertentu yang lepas ke udara dalam konsentrasi tertentu akan membunuh manusia. Konsen trasi fluorida yang diperkenankan dalam udara 2,5 mg/meter kubik. Fluorida dan persenyawaannya adalah racun dan mengganggu metabolisme kalsium dan enzim. Sedangkan hidrogen fluorida sangat initatif terhadap jaringan kulit, merusak paru-paru dan menimbulkan penyakit pneumonia.Asam sulfida, garam sulfida dan karbon disulfida adalah persenyawaan yang mengandung sulfur. Persenyawaan sulfida dapat terurai dan lepas ke udara menyebabkan kerusakan pada sel susunan saraf.

Dalam kadar rendah tidak berbau dan bila kadar bertambah menyebabkan bau yang tidak enak gejalanya cepat menghebat menimbulkan pusing, batuk dan mabuk.Uap, yaitu bentuk gas dari zat tertentu tidak kelihatan dan dalam ruangan berdifusi mengisi seluruh ruang. Yang harus diketahui adalah jenis uap yang terdapat dalam ruangan karena untuk setiap zat berbeda.daya reaksinya. Zat-zat yang mudah menguap adalah amoniak, chlor, nitrit, nitrat dan lain-lain.

Debu yaitu partikel zat padat yang timbul pada proses industri sepeti pengolahan, penghancuran dan peledakan, baik berasal dari bahan organik maupun dad anorganik. Debu, karena ringan, akan melayang di udara dan turun karena gaya tarik bumi. Debu yang membahayakan adalah debu kapas, debu asbes, debu silicosis, debu stannosis pada pabrik timah putih, debusiderosis, debu yang mengandung Fe2O3.

Penimbunan debu dalam paru-paru akibat lingkungan mengandung debu yaitu pada manusia yang ada di sekitarnya bekerja atau bertempat tinggal. Kerusakan kesehatan akibat debu tergantung pada lamanya kontak, konsentrasi debu dalam udara,jenis debu itu sendiri dan lain-lain.

Asap adalah partikel dari zat karbon yang keluar dari cerobong asap industri karena pembakaran tidak sempurna dari bahan-bahan yang mengandung karbon. Asap bercampur dengan kabut/uap air pada malam hari akan turun ke bumi bergantungan pada daun-daunan ataupun berada di atas atap rumah.

Bahan yang bersifat partikel menurut sifatnya akan menimbulkan:
1.Ransangan saluran pernafasan
2.Kematian karena bersifat racun
3.Alergi
4.Fibrosis
5.Penyakit demam

Bahan yang bersifat gas dan uap menurut sifat-sifatnya akar berakibat:
1.Merangsang penciuman seperti: HC1, H2S, NH3
2.Merusak alat-alat dalam tubuh, misalnya CaCI
3.Merusak susunan saraf: uap plumbum, fluorida
4.Merusak susunan darah: benzena
Untuk menghindari dampak yang diakibatk’an limbah melalui udara selain menghilangkan sumbernya juga dilakukan pengendalian dengan penetapan nilai ambang batas.

Nilai ambang batas adalah kadar tertinggi suatu zat dalam udara yang
diperkenankan, sehingga manusia dan makhluk lainnya tidak mengdlami gangguan penyakit atau menderita karena zat tersebut. Di samping itu masih ada rumusan lain yang diberikan khusus bagi para pekerja dalam lingkungan itu. Karena waktu kerja manusia pada umumnya 8 jam sehari, 40 jam seminggu,maka nilai ambang batas bagi mereka berbeda dengan nilai ambang batas pada umumnya.

Suatu zat yang sama akan berbeda pengetrapannya terhadap kedua obyek yang berbeda,misalnya antara manusia dan hewan, antara manusia dengan manusia sendiri dalam dua lingkungan yang berbeda.
by : joko akhiriyanto
Read more...

Karakteristik Limbah Gas dan Partikel

| | 0 komentar

Pada umumnya limbah gas dari pabrik bersumber dari penggunaan bahan baku, proses, dan hasil serta sisa pembakaran. Pada saat pengolahan pendahuluan, limbah gas maupun partikel timbul karena perlakuan bahan-bahan sebelum diproses lanjut. Limbah yang terjadi disebabkan berbagai hal antara lain; karena reaksi kimia, kebocoran gas, hancuran bahanbahan dan lain-lain.

Pada waktu proses pengolahan, gas juga timbul sebagai akibat reaksi kimia maupun fisika. Adakalnya limbah yang terjadi sulit dihindari sehingga harus dilepaskan ke udara. Namun dengan adanya kemajuan teknologi, setiap gas yang timbul pada rangkaian proses telah dapat diupayakan pengendaliannya.

Sebagian besar gas maupun partikel terjadi pada ruang pembakaran, sebagai sisa yang tidak dapat dihindarkan dan karenanya harus dilepaskan melalui cerobong asap. Banyak jenis gas dan partikel gas lepas dari pabrik melalui cerobong asap ataupun penangkap debu harus ditekan sekecil mungkin dalam upaya mencegah kerusakan lingkungan.

Jenis gas yang bersifat racun antara lain SO2, CO, NO,timah hitam, amoniak, asam sulfida dan hidrokarbon. Pencemaran yang terjadi dalam udara dapat merupakan reaksi antara dua atau lebih zat pencemar. Misalnya reaksi fotokimia, yaitu reaksi yang terjadi karena bantuan sinar ultra violet dari sinar matahari.589 Kemudian reaksi oksidasi gas dengan partikel logam dengan udara sebagai katalisator.

Konsentrasi bahan pencemar dalam udara dipengaruhi berbagai macam faktor antara lain: volume bahan pencemar, sifat bahan, kondisi iklim dan cuaca, topografi.

1.Oksida Nitrogen
Oksida nitrogen lazim dikenal dengan NO. bersumber dari instalasi pembakaran pabrik dan minyak bumi. Dalam udara,NO dioksidasi menjadi NO2 dan bila bereaksi dengan hidrokarbon yang terdapat dalam udara akan membentuk asap. NO2 akan berpengaruh terhadap tanam-tanaman dan sekaligus menghambat pertumbuhan.
Pabrik yang menghasilkan NO di antaranya adalah pabrik pulp dan rayon, almunium, turbin gas, nitrat, bahan peledak,semen, galas, batubara, timah hitam, song dan peleburan magnesium.

2.Fluorida
Fluorida adalah racun bersifat kumulatif dan dapat berkembang d atmosfer karena amat reaktif. Dalam bentuk fluorine, zat ini tidak dihisap tanah tapi langsung masuk ke dalam daun-daun menyebabkan daun berwarna kuningkecoklatan.Binatang yang memakan daunan tersebut bisa menderita penyakit gigi rontok. Pabrik yang menjadi sumber fluor antara lain pabrik pengecoran aluminium pabrik pupuk,
pembakaran batubara, pengecoran baja dan lainnya

3.Sulfurdioksida
Gas SO2 dapat merusak tanaman, sehingga daunnya menjadi kuning kecoklatan atau merah kecoklatan dan berbintik-bintik.Gas ini juga menyebabkan hujan asam, korosi pada permukaan logam dan merusak bahan nilon dan lain-lain.Gas SO2 menyebabkan terjadinya kabut dan mengganggu reaksi foto sintesa pada permukaan daun. Dengan air, gas SO2 membentuk asam sulfat dan dalam udara tidak stabil. Sumber
gas SO2 adalal pabrik belerang, pengecoran biji logam, pabrik asam sulfat, pabrik semen, peleburan tembaga, timah hitam dan lain-lain. Dalam konsentrasi melebihi nilai ambang batas dapat mematikan.

4.Ozon
Ozon dengan rumus molekul O3 disebut oksidan merpakan reaksi foto kimiawi antara NO2 dengan hidrokarbon karena pengaruh ultra violet sinar matahari. Sifat ozon merusak daun tumbuh-tumbuhan, tekstil dan melunturkan warna. Reaksi pembentukan ozon sebagai berikut:

gb723
Peroksil asetel nitrat merupakan reaksi NO2 dalam fotosintesa
merusakkan tanaman.

5.Amonia
Gas amonia dihasilkan pabrik pencelupan, eksplorasi minyak
dan pupuk. Gas ini berbahaya bagi pemanfaatan dan baunya
sangat merangsang. Pada konsentrasi 25% mudah meledak.

6.Partikel
Partikel merupakan zat dispersi terdapat dalam atmosfer,berbagai larutan, mempunyai sifat fisis dan kimia.Partikel dalam udara terdiri dari:
-Asap, merupakan hasil dari suatu pembakaran.
-Debu, partikel kecil dengan diameter 1 mikron.
-Kabut, partikel cairan dengan garis tengah tertentu.
-Aerosol, merupakan inti dari kondensasi uap.
-Fume, merupakan hasil penguapan.
by: joko akhiriyanto
Read more...

Limbah Gas dan Partikel

| | 0 komentar

Udara adalah media pencemar untuk limbah gas. Limbah gas atau asap yang diproduksi pabrik keluar bersamaan dengan udara. Secara alamiah udara mengandung unsur kimia seperti O2, N2, NO2,CO2, H2 dan Jain-lain. Penambahan gas ke dalam udara melampaui kandungan alami akibat kegiatan manusia akan menurunkan kualitas udara.
Zat pencemar melalui udara diklasifikasikan menjadi dua bagian yaitu partikel dan gas. Partikel adalah butiran halus dan masih rnungkin terlihat dengan mata telanjang seperti uap air, debu, asap,kabut dan fume-Sedangkan pencemaran berbentuk gas tanya aapat dirasakan melalui penciuman (untuk gas tertentu) ataupun akibat langsung. Gas-gas ini antara lain SO2, NOx, CO, CO2, hidrokarbon dan lain-lain.
Untuk beberapa bahan tertentu zat pencemar ini berbentuk padat dan cair. Karena suatu kondisi temperatur ataupun tekanan tertentu bahan padat/cair itu dapat berubah menjadi gas. Baik partikel maupun gas membawa akibat terutama bagi kesehatan,manusia seperti debu batubara, asbes, semen, belerang, asap pembakaran,uap air, gas sulfida, uap amoniak, dan lain-lain.
Pencemaran yang ditimbulkannya tergantung pada jenis limbah, volume yang lepas di udara bebas dan lamanya berada dalam udara. Jangkauan pencemaran melalui udara dapat berakibat luas karena faktor cuaca dan iklim turut mempengaruhi.Pada malam hari zat yang berada dalam udara turun kembali ke bumi bersamaan dengan embun. Adanya partikel kecil secara terus menerus jatuh di atap rumah, di permukaan daun pada pagi hari menunjukkan udara mengandung partikel. Kadang-kadang terjadi hujan masam.
Jenis industri semacam ini akumulasinya di udara dipengaruhi arah angin, tetapi karena sumbernya bersifat stationer maka lingkungan sekitar menerima resiko yang sangat tinggi dampak pencemaran.
Berdasarkan ini maka konsentrasi bahan pencemar dalam udara perlu ditetapkan sehingga tidak menimbulkan gangguan terhadap manusia dan makhluk lain sekitarnya.

petanyaan;
1.jelaskan pengertian dari udara..
jwb=udara ialah media pencemar untuk limbah gas.
2.jelakan pengertian definisi dari pencemaran partikel...
jwb=ialah butiran halus dan masih rnungkin terlihat dengan mata telanjang seperti uap air, debu, asap,kabut dan fume-Sedangkan pencemaran berbentuk gas tanya aapat dirasakan melalui penciuman (untuk gas tertentu) ataupun akibat langsung. Gas-gas ini antara lain SO2, NOx, CO, CO2, hidrokarbon dan lain-lain.
3.jelaskan unsur apa sajakah yang terkandung didalam udara..
jwb= O2, N2, NO2,CO2, H2 dan Jain-lain
4.indutri pupuk merupakan industri yang menghasilkan limbah seperti...
jwb=uap asam,NH3,bau dan partikel.
5. mengapa konsentrasi bahan pencemar dalam udara perlu ditetapkan...
jwb=supaya bahan pencmar dalam udara tidak menimbulkan gangguan terhadap manusia dan makhluk lain sekitarnya
By arief mustakim
Read more...

Nilai Ambang Batas

| | 0 komentar

Daya racun suatu bahan tergantung pada kualitas dan kuantitas bahan tersebut. Dengan jumlah sedikit sudah membahayakan manusia ini tidak lain karena kualitasnya cukup memadai untuk membunuh. Oleh sebab itu pengetahuan akan sifat fisika dan kimia bahan beracun dan berbahaya sangat penting bagi karyawan yang bekerja dalam pabrik.
Kegunaan bahan, akibatnya terhadap manusia dan lingkungan, tanaman dan hewan, walau sebagai pengetahuan umum sangat penting peranannya. Demikian juga sifat bahan terhadap pengaruh temperatur tinggi, terhadap air,
terhadap benturan dan sebagainya perlu dipahami oleh para karyawan di pabrik.
Nilai ambang batas pada mulanya ditujukan pada karyawan yang bekerja di perusahaan industri yaitu untuk menjamin kesehatan dan keselamatan kerja selama mereka bekerja dalam pabrik. Sebagai karyawan yang bekerja untuk puluhan tahun harus terjamin kesehatannya akibat kondisi udara dan lingkungan kerjanya. Udara sekelilingnya haruslah memenuhi syarat kesehatan walaupun mengandung bahan tertentu. Agar udara memenuhi syarat kesehatan maka konsentrasi bahan dalam udara ditetapkan batasannya.
Artinya konsentrasi bahan tersebut tidak mengakibatkan penyakit atau kelainan selama delapan jam bekerja sehari atau 40 jam seminggu. Ini menunjukkan bahwa di tempat kerja tidak mungkin bebas polusi udara.
Nilai ambang batas adalah alternatif bahwa walau apapun yang terdapat
dalam lingkungan kerjanya, manusia merasa aman. Dalam perkataan lain, nilai ambangbatas juga diidentikkan dengan kadar maksimum yang diperkenankan. Kedua pengertian ini mempunyai tujuan sama.
Daya tahan manusia atau reaksi fisiologi manusia berbeda terhadap bahan
tertentu seperti misalnya reaksi suatu bangsa terhadap penyakit tertentu. Di samping itu efek cuaca dan dan musim turut mempengaruhi konsentrasi sehingga antara satu periode perlu mendapat perubahan. Untuk keadaan lain nilai ambang batas ini diambil secara rata-rata.
Pada umumnya satuan yang dipakai untuk nilai ambang batas adalah mg/m3 yaitu bagian dalam sejuta yang disingkat dengan bds atau ppm (part per million). Satuan mg/m3 biasanya dikonversikan kepada satuan mg/liter melalui:

ppm = part per million (bagian dalam sejuta)
M = berat molekul
p = tekanan dalam mm. Hg.
t = suhu dalam derajat Celcius
mg/1 = satuan untuk ppm
Antara satu senyawa dengan senyawa lain berbeda nilai ambang batasnya dan antara senyawa itu sendiri juga berbeda untuk waktu yang berbeda pula.
Tabel kualitas udara standar untuk gas dan debu di Amerika sebagai ppm.
pertanyaan:
1.jelaskan mengapa Nilai ambang batas pada mulanya ditujukan pada karyawan yang bekerja di perusahaan industri...
jwb=karena untuk menjamin kesehatan dan keselamatan kerja selama mereka bekerja dalam pabrik
2.jelaskan pengertian dari Nilai ambang batas...
jwb=alternatif bahwa walau apapun yang terdapat
dalam lingkungan kerjanya, manusia merasa aman.
3.jelaskan Pada umumnya satuan yang dipakai untuk nilai ambang batas ….
jwb=mg/m3 yaitu bagian dalam sejuta yang disingkat dengan bds atau ppm (part per million).
4.tuliskan dan jelaskan rumus yang dipakai untuk mengetahui nilai ambang batas...
jwb=
ppm = part per million (bagian dalam sejuta)
M = berat molekul
p = tekanan dalam mm. Hg.
t = suhu dalam derajat Celcius
mg/1 = satuan untuk ppm
5.Agar udara memenuhi syarat kesehatan maka konsentrasi bahan dalam udara ditetapkan batasannya,maka dalam hal ini diperlukan..
jwb=konsentrasi bahan tersebut tidak mengakibatkan penyakit atau kelainan selama delapan jam bekerja sehari atau 40 jam seminggu. Ini menunjukkan bahwa di tempat kerja tidak mungkin bebas polusi udara.
By arief mustakim
Read more...

Pencemaran Limbah Padat

| | 0 komentar

Pencemaran lingkungan yang ditimbulkan limbah padat kemungkinan adalah timbulnya gas beracun, di antaranya asam sulfida, amoniak methan, CO2, CO. Limbah dari berbagai macam bentuk dan jenis bertumpuk pada satu tempat mengakibatkan terjadinya pembusukan dengan bantuan mikroorganisme. Adanya musim hujan dan kemarau ganti-berganti, proses pemecahan bahan organik oleh bakteri penghancur dalam suasana aerob maupun anerob menimbulkan gas.
Penurunan Kualitas Udara
Pengaruh terhadap kualitas udara akibat timbulnya gas hasil reaksi kimia dalam timbunan limbah. Gas seperti H2S, NH3, methane akan terkonsentrasi di udara dengan nilai tartentu. Dalam konsentrasi 50 ppm H2S membuat mabuk dan pusing. Konsentrasi H2S yang diizinkan 30 mg per meter kubik udara. Karbon monoksida (CO) berasal dari sisa pembakaran yang tidak sempurna. Nilai ambang batas CO 100 ppm = 110 mg per meterkubik udara. Amoniak yang berupa gas pada suhu dan tekanan normal mempunyai nilai ambang batas 35 mg per meter kubik udara. Serat asbestos, hidrokarbon, fenol, natrium sulfida, oksida logam dari pembakaran, seng, oksida, SO2 yang berasal dari bahan padat merupakan racun bagi manusia.
Penurunan Kualitas Air
Buangan jenis padat berupa lumpur, buburan dengan tidak disadari dibuang bersama air limbah. Demikian juga bentuk padatan lain yang tidak ekonomis dibuang langsung keperairan. Padatan tersebut dalam air dipecah dan berurai menjadi bahan pencemar lain seperti padatan larut, padatan mengendap dan zat organik lain. Kekeruhan air, warna dan rasa air berubah. Air menjadi beracun akibat limbah padat tersebut.
Kerusakan Permukaan Tanah
Timbunan sampah menghasilkan gas nitrogen, hidrogen,amoniak dan asam sulfida. Adanya zat merkuri, chrom dan arsen menimbulkan gangguan terhadap bio tanah, tumbuhan,merusak struktur permukaan dan tekstur tanah. Limbah lain seperti oksida logam, baik yang terlarut maupun dalam areal permukaan tanah, menjadi racun.
Pertanyaan;

1.jelaskan dampak yang di timbulkan oleh limbah padat..
jwb=ialah timbulnya gas beracun, di antaranya asam sulfida, amoniak methan, CO2, CO.
2.sebutkan gas apa sajakah yang dihasilkan dari timbunan sampah...
jwb= gas nitrogen, hidrogen,amoniak dan asam sulfida
3.jelaskan hal apa sajakah yang mempengaruhi terjadinya penurunan air..
jwb=buangan jenis padat berupa lumpur,padatan mengendap dan zat organik lain.
4.hal apa sajakah yang mempengaruhi penurunan kualitas udara,berikan contohnya...
jwb=Pengaruh terhadap kualitas udara akibat timbulnya gas hasil reaksi kimia dalam timbunan limbah. Gas seperti H2S, NH3.
5.mengapa Limbah dari berbagai macam bentuk dan jenis bertumpuk pada satu tempat mengakibatkan
jwb=akan terjadinya pembusukan dengan bantuan mikroorganisme.
By arief mustakim
Read more...
| | 0 komentar

Limbah Gas dan Partikel
Udara adalah media pencemar untuk limbah gas. Limbah gas atau asap yang diproduksi pabrik keluar bersamaan dengan udara. Secara alamiah udara mengandung unsur kimia seperti O2, N2, NO2,CO2, H2 dan Jain-lain. Penambahan gas ke dalam udara melampaui kandungan alami akibat kegiatan manusia akan menurunkan kualitas udara.
Zat pencemar melalui udara diklasifikasikan menjadi dua bagian yaitu partikel dan gas. Partikel adalah butiran halus dan masih rnungkin terlihat dengan mata telanjang seperti uap air, debu, asap,kabut dan fume-Sedangkan pencemaran berbentuk gas tanya aapat dirasakan melalui penciuman (untuk gas tertentu) ataupun akibat langsung. Gas-gas ini antara lain SO2, NOx, CO, CO2, hidrokarbon dan lain-lain.
Untuk beberapa bahan tertentu zat pencemar ini berbentuk padat dan cair. Karena suatu kondisi temperatur ataupun tekanan tertentu bahan padat/cair itu dapat berubah menjadi gas. Baik partikel maupun gas membawa akibat terutama bagi kesehatan,manusia seperti debu batubara, asbes, semen, belerang, asap pembakaran,uap air, gas sulfida, uap amoniak, dan lain-lain.
Pencemaran yang ditimbulkannya tergantung pada jenis limbah, volume yang lepas di udara bebas dan lamanya berada dalam udara. Jangkauan pencemaran melalui udara dapat berakibat luas karena faktor cuaca dan iklim turut mempengaruhi.Pada malam hari zat yang berada dalam udara turun kembali ke bumi bersamaan dengan embun. Adanya partikel kecil secara terus menerus jatuh di atap rumah, di permukaan daun pada pagi hari menunjukkan udara mengandung partikel. Kadang-kadang terjadi hujan masam.
Jenis industri semacam ini akumulasinya di udara dipengaruhi arah angin, tetapi karena sumbernya bersifat stationer maka lingkungan sekitar menerima resiko yang sangat tinggi dampak pencemaran.
Berdasarkan ini maka konsentrasi bahan pencemar dalam udara perlu ditetapkan sehingga tidak menimbulkan gangguan terhadap manusia dan makhluk lain sekitarnya.

petanyaan;
1.jelaskan pengertian dari udara..
jwb=udara ialah media pencemar untuk limbah gas.
2.jelakan pengertian definisi dari pencemaran partikel...
jwb=ialah butiran halus dan masih rnungkin terlihat dengan mata telanjang seperti uap air, debu, asap,kabut dan fume-Sedangkan pencemaran berbentuk gas tanya aapat dirasakan melalui penciuman (untuk gas tertentu) ataupun akibat langsung. Gas-gas ini antara lain SO2, NOx, CO, CO2, hidrokarbon dan lain-lain.
3.jelaskan unsur apa sajakah yang terkandung didalam udara..
jwb= O2, N2, NO2,CO2, H2 dan Jain-lain
4.indutri pupuk merupakan industri yang menghasilkan limbah seperti...
jwb=uap asam,NH3,bau dan partikel.
5. mengapa konsentrasi bahan pencemar dalam udara perlu ditetapkan...
jwb=supaya bahan pencmar dalam udara tidak menimbulkan gangguan terhadap manusia dan makhluk lain sekitarnya
By arief mustakim
Read more...

Minggu, 06 Desember 2009

PENGOLAHAN LIMBAH CAIR

| | 0 komentar

industri primer pengolahan hasil hutan merupakan salah satu penyumbang limbah cair yang berbahaya bagi lingkungan. Bagi industri-industri besar, seperti industri pulp dan kertas, teknologi pengolahan limbah cair yang dihasilkannya mungkin sudah memadai, namun tidak demikian bagi industri kecil atau sedang. Namun demikian, mengingat penting dan besarnya dampak yang ditimbulkan limbah cair bagi lingkungan, penting bagi sektor industri kehutanan untuk memahami dasar-dasar teknologi pengolahan limbah cair.
Teknologi pengolahan air limbah adalah kunci dalam memelihara kelestarian lingkungan. Apapun macam teknologi pengolahan air limbah domestik maupun industri yang dibangun harus dapat dioperasikan dan dipelihara oleh masyarakat setempat. Jadi teknologi pengolahan yang dipilih harus sesuai dengan kemampuan teknologi masyarakat yang bersangkutan. Berbagai teknik pengolahan air buangan untuk menyisihkan bahan polutannya telah dicoba dan dikembangkan selama ini. Teknik-teknik pengolahan air buangan yang telah dikembangkan tersebut secara umum terbagi menjadi 3 metode pengolahan:
1. pengolahan secara fisika
2. pengolahan secara kimia
3. pengolahan secara biologi
Untuk suatu jenis air buangan tertentu, ketiga metode pengolahan tersebut dapat diaplikasikan secara sendiri-sendiri atau secara kombinasi.
Pengolahan Secara Fisika
Pada umumnya, sebelum dilakukan pengolahan lanjutan terhadap air buangan, diinginkan agar bahan-bahan tersuspensi berukuran besar dan yang mudah mengendap atau bahan-bahan yang terapung disisihkan terlebih dahulu. Penyaringan (screening) merupakan cara yang efisien dan murah untuk menyisihkan bahan tersuspensi yang berukuran besar. Bahan tersuspensi yang mudah mengendap dapat disisihkan secara mudah dengan proses pengendapan. Parameter desain yang utama untuk proses pengendapan ini adalah kecepatan mengendap partikel dan waktu detensi hidrolis di dalam bak pengendap.
Proses flotasi banyak digunakan untuk menyisihkan bahan-bahan yang mengapung seperti minyak dan lemak agar tidak mengganggu proses pengolahan berikutnya. Flotasi juga dapat digunakan sebagai cara penyisihan bahan-bahan tersuspensi (clarification) atau pemekatan lumpur endapan (sludge thickening) dengan memberikan aliran udara ke atas (air flotation).
Proses filtrasi di dalam pengolahan air buangan, biasanya dilakukan untuk mendahului proses adsorbsi atau proses reverse osmosis-nya, akan dilaksanakan untuk menyisihkan sebanyak mungkin partikel tersuspensi dari dalam air agar tidak mengganggu proses adsorbsi atau menyumbat membran yang dipergunakan dalam proses osmosa.
Proses adsorbsi, biasanya dengan karbon aktif, dilakukan untuk menyisihkan senyawa aromatik (misalnya: fenol) dan senyawa organik terlarut lainnya, terutama jika diinginkan untuk menggunakan kembali air buangan tersebut.Teknologi membran (reverse osmosis) biasanya diaplikasikan untuk unit-unit pengolahan kecil, terutama jika pengolahan ditujukan untuk menggunakan kembali air yang diolah. Biaya instalasi dan operasinya sangat mahal.
Pengolahan Secara Kimia
Pengolahan air buangan secara kimia biasanya dilakukan untuk menghilangkan partikel-partikel yang tidak mudah mengendap (koloid), logam-logam berat, senyawa fosfor, dan zat organik beracun; dengan membubuhkan bahan kimia tertentu yang diperlukan. Penyisihan bahan-bahan tersebut pada prinsipnya berlangsung melalui perubahan sifat bahan-bahan tersebut, yaitu dari tak dapat diendapkan menjadi mudah diendapkan (flokulasi-koagulasi), baik dengan atau tanpa reaksi oksidasi-reduksi, dan juga berlangsung sebagai hasil reaksi oksidasi.
Pengendapan bahan tersuspensi yang tak mudah larut dilakukan dengan membubuhkan elektrolit yang mempunyai muatan yang berlawanan dengan muatan koloidnya agar terjadi netralisasi muatan koloid tersebut, sehingga akhirnya dapat diendapkan. Penyisihan logam berat dan senyawa fosfor dilakukan dengan membubuhkan larutan alkali (air kapur misalnya) sehingga terbentuk endapan hidroksida logam-logam tersebut atau endapan hidroksiapatit. Endapan logam tersebut akan lebih stabil jika pH air > 10,5 dan untuk hidroksiapatit pada pH > 9,5. Khusus untuk krom heksavalen, sebelum diendapkan sebagai krom hidroksida [Cr(OH)3], terlebih dahulu direduksi menjadi krom trivalent dengan membubuhkan reduktor (FeSO4, SO2, atau Na2S2O5).
Penyisihan bahan-bahan organik beracun seperti fenol dan sianida pada konsentrasi rendah dapat dilakukan dengan mengoksidasinya dengan klor (Cl2), kalsium permanganat, aerasi, ozon hidrogen peroksida.Pada dasarnya kita dapat memperoleh efisiensi tinggi dengan pengolahan secara kimia, akan tetapi biaya pengolahan menjadi mahal karena memerlukan bahan kimia.
Pengolahan secara biologi
Semua air buangan yang biodegradable dapat diolah secara biologi. Sebagai pengolahan sekunder, pengolahan secara biologi dipandang sebagai pengolahan yang paling murah dan efisien. Dalam beberapa dasawarsa telah berkembang berbagai metode pengolahan biologi dengan segala modifikasinya.Pada dasarnya, reaktor pengolahan secara biologi dapat dibedakan atas dua jenis, yaitu:
1. Reaktor pertumbuhan tersuspensi (suspended growth reaktor);
2. Reaktor pertumbuhan lekat (attached growth reaktor).
Di dalam reaktor pertumbuhan tersuspensi, mikroorganisme tumbuh dan berkembang dalam keadaan tersuspensi. Proses lumpur aktif yang banyak dikenal berlangsung dalam reaktor jenis ini. Proses lumpur aktif terus berkembang dengan berbagai modifikasinya, antara lain: oxidation ditch dan kontak-stabilisasi. Dibandingkan dengan proses lumpur aktif konvensional, oxidation ditch mempunyai beberapa kelebihan, yaitu efisiensi penurunan BOD dapat mencapai 85%-90% (dibandingkan 80%-85%) dan lumpur yang dihasilkan lebih sedikit. Selain efisiensi yang lebih tinggi (90%-95%), kontak stabilisasi mempunyai kelebihan yang lain, yaitu waktu detensi hidrolis total lebih pendek (4-6 jam). Proses kontak-stabilisasi dapat pula menyisihkan BOD tersuspensi melalui proses absorbsi di dalam tangki kontak sehingga tidak diperlukan penyisihan BOD tersuspensi dengan pengolahan pendahuluan.
Kolam oksidasi dan lagoon, baik yang diaerasi maupun yang tidak, juga termasuk dalam jenis reaktor pertumbuhan tersuspensi. Untuk iklim tropis seperti Indonesia, waktu detensi hidrolis selama 12-18 hari di dalam kolam oksidasi maupun dalam lagoon yang tidak diaerasi, cukup untuk mencapai kualitas efluen yang dapat memenuhi standar yang ditetapkan. Di dalam lagoon yang diaerasi cukup dengan waktu detensi 3-5 hari saja.Di dalam reaktor pertumbuhan lekat, mikroorganisme tumbuh di atas media pendukung dengan membentuk lapisan film untuk melekatkan dirinya. Berbagai modifikasi telah banyak dikembangkan selama ini, antara lain:
1. trickling filter
2. cakram biologi
3. filter terendam
4. reaktor fludisasi
Seluruh modifikasi ini dapat menghasilkan efisiensi penurunan BOD sekitar 80%-90%.
Ditinjau dari segi lingkungan dimana berlangsung proses penguraian secara biologi, proses ini dapat dibedakan menjadi dua jenis:
1. Proses aerob, yang berlangsung dengan hadirnya oksigen;
2. Proses anaerob, yang berlangsung tanpa adanya oksigen.
Apabila BOD air buangan tidak melebihi 400 mg/l, proses aerob masih dapat dianggap lebih ekonomis dari anaerob. Pada BOD lebih tinggi dari 4000 mg/l, proses anaerob menjadi lebih ekonomis.
by joko akhiriyanto
Read more...

Kualitas Limbah

| | 0 komentar

Kualitas limbah menunjukkan spesifikasi limbah yang diukur dari kandungan pencemar dalam limbah. Kandungan pencemar dalam limbah terdiri dari berbagai parameter. Semakin sedikit parameter dan semakin kecil konsentrasi, menunjukkan peluang pencemar terhadap lingkungan semakin kecil.
Limbah yang diproduksi pabrik berbeda satu dengan yang lain, masing-masing memiliki karakteristik tersendiri pula. Karakteristik ini diketahui berdasarkan parameternya. Apabila limbah masuk ke dalam lingkungan, ada beberapa kemungkinan yang diciptakan. Kemungkinan pertama, lingkungan tidak mendapat pengaruh yang berarti; kedua, ada pengaruh perubahan tapi tidak menyebabkan pencemaran; ketiga, memberi perubahan dan menimbulkan pencemaran.
Ada berbagai alasan untuk mengatakan demikian. Tidak memberi pengaruh terhadap lingkungan karena volume limbah kecil dan parameter pencemar yang terdapat di dalamnya sedikit dengan konsentrasi kecil. Karena itu andaikata masuk pun dalam lingkungan ternyata lingkungan mamp,u menetralisasinya. Kandungan bahan yang terdapat dalam limbah konsentrasinya barangkali dapat diabaikan karena kecilnya. Ada berbagai parameter pencemar yang menimbulkan perubahan kualitas lingkungan namun tidak menimbulkan pencemaran,Artinya : lingkungan itu memberikan toleransi terhadap perubahan serta tidak menimbulkan dampak negatip.
Kualitas limbah dipengaruhi berbagai faktor Yaitu : volume air limbah, kandungan bahan pencemar, frekuensi pembuangan limbah. Penetapan standar kualitas limbah harus dihubungkan dengan kualitas lingkungan.
Kualitas lingkungan dipengaruhi berbagai komponen yang ada dalam lingkungan itu seperti kualitas air, kepadatan penduduk, flora dan fauna, kesuburan tanah, tumbuh-tumbuhan dan lain-lain.
Adanya perubahan konsentrasi limbah menyebabkan terjadinya perubahan
keadaan badan penerima. Semakin lama badan penerima dituangi air limbah, semakin tinggi pula konsentrasi bahan pencemar di dalamnya.
Pada suatu saat badan penerima tidak mampu lagi. memulihkan keadaannya. Zat-zat pencemar yang masuk sudah terlalu banyak dan mengakibatkan tidak ada lagi kemampuannya menetralisasinya. Atas dasar ini perlu ditetapkan batas konsentrasi air limbah yang masuk dalam lingkungan badan penerima.
Dengan demikian walau dalam jangka waktu seberapa pun lingkungan tetap mampu mentolerirnya. Toleransi ini menunjukkan kemampuan lingkungan untuk menetralisasi ataupun mengeliminasi bahan pencemaran sehingga perubahan kualitas negatif dapat dicegah. Dalam hal inilah perlunya batasan-batasan konsentrasi yang disebut dengan standar kualitas limbah.
Pada jangka waktu yang cukup jauh akan timbul kesulitan menetapkan perubahan kualitas karena periode waktu yang demikian jauh. Dengan konsentrasi limbah tertentu, tidak terjadi perubahan kualitas lingkungan. Artinya perubahan kualitas lingki.ngan tidak muncul dalam waktu relatif pendek bila hanya berdasarkan standar kualitas limbah. Perubahan hanya dapat dipantau pada masa-masa 20 atau 25 tahun yang akan datang. Dengan demikian maka standar kualitas lingkungan perlu ditetapkan sebagai bagian dari penetapan kualitas limbah. Sebagai air limbah diukur dengan parameter standar kualitas limbah dan sebagai badan penerima diukur dengan standar kualitas lingkungan.
by joko akhiriyanto
Read more...

Limbah Cair

| | 0 komentar

Limbah Cair
Limbah cair bersumber dari pabrik yang biasanya banyak menggunakan air dalam sistem prosesnya. Di samping itu ada pula bahan baku mengandung air sehingga dalam proses pengolahannya air harus dibuang. Air terikut dalam proses pengolahan kemudian dibuang misalnya ketika dipergunakan untuk pencuci suatu bahan sebelum diproses lanjut.
Air ditambah bahan kimia tertentu kemudian di-proses dan setelah itu dibuang,Semua jenis perlakuan ini mengakibatkan buangan air. Pada beberapa pabrik tertentu, misalnya pabrik pengolahan kawat, seng, besi baja – sebagian besar air dipergunakan untuk pendinginan mesin ataupun dapur pengecoran. Air ini dipompa dari sumbernya lalu dilewatkan pada bagian-bagian yang membutuhkan pendinginan, kemudian dibuang.
Oleh sebab itu pada saluran pabrik terlihat air mengalir dalam volume yang cukup besar. Air ketel akan dibuang pada waktu-waktu tertentu setelah melalui pemeriksaan laboratorium, sebab air ini tidak memenuhi syarat lagi sebagai air ketel dan karenanya harus dibuang. Bersamaan dengan itu dibutuhkan pula sejumlah air untuk mencuci bagian dalam ketel Air pencuci ini juga harus dibuang.
Pencucian lantai pabrik setiap hari untuk beberapa pabrik tertentu membutuhkan air dalam jumlah banyak. Pabrik pengalengan ikan membutuhkan air pencuci dalam jumlah yang relatif harus banyak, Jumlah air terus menerus diperlukan mencuci peralatan, lantai dan lainlain,Karat perlu dicuci sebelum masuk pencincangan dan pada saat dicincang air terus-menerus mengalir untuk menghilangkan pasir abu yang terbawa.
Air dari pabrik membawa sejumlah padatan dan partikel baik yang larut maupun mengendap. Bahan ini ada yangkasar dan halus. Kerap kali air dari pabrik berwarna keruh dan temperaturnya tinggi. Air yang mengandung senyawa kimia beracun dan berbahaya mempunyai sifat tersendiri. Air limbah yang telah tercemar memberikan 577 ciri yang dapat diidentifikasi secara visual dapat diketahui dari kekeruhan, warna air, rasa, bau yang ditimbulkan dan indikasi lainnya.
Sedangkan identifikasi secara laboratorium, ditandai dengan perubahan sifat kimia air di mana air telah mengandung bahan kimia yang beracun dan berbahaya dalam konsentrasi yang melebihi batas dianjurkan. Jenis industri menghasilkan limbah cair di antaranya adalah industri-industri pulp dan rayon, pengolahan crumb rubber, minyak kelapa sawit, baja dan besi, minyak goreng, kertas, tekstil, kaustiksoda, elektro plating, plywood, tepung tapioka, pengalengan, pencelupan dan pewarnaan, daging dan lain-lain.
Jumlah limbah yang dikeluarkan masing-masing industri ini tergantung pada banyak produksi yang dihasilkan, serta jenis produksi. Industri pulp dan rayon menghasilkan limbah air sebanyak 30 m3 setiap ton pulp yang diproduksi. Untuk industri ikan dan makanan laut limbah air berkisar antara 79 m3 sampai dengan 500 m3 per hari; industri pengolahan crumb rubber limbah air antara 100 m3 s/d 2000 m3 per hari, industri pengolahan kelapa sawit mempunyai limbah air: rata-rata 120 m3 per hari skala menengah.
by joko akhiriyanto
Read more...

Faktor-Faktor Yang Mempengaruhi Kualitas Limbah

| | 0 komentar

Volume
Air Kualitas limbah ditentukan dari banyaknya parameter dalam limbah dan konsentrasi setiap parameter. Semakin banyak volume air yang bercampur dengan limbah semakin kecil konsentrasi pencemar. Badan penerima yang menerima limbah sering tidak mendapat pengaruh.
Kualitas Air
Kualitas air badan penerima mengandung bahan/senyawa tertentu sebelum menerima buangan. Kualitas tersebut menetapkan arah penggunaan air. Adanya bahan pencemar yang sama, tidak akan mempengaruhi konsentrasi bahan dalam air penerima. Tetapi bila konsentrasi bahan pencemar dalam limbah lebih besar dari konsentrasi bahan pencemar dalam badan penerima (kemungkinan juga tidak ada), maka konsentrasi bahan pencemar setelah bercampur akan menjadi
lebih kecil. Sejauh mana konsentrasi tersebut dapat ditoleransi sesuai dengan standar kualitas lingkungan agar kualitas lingkungan tidak mengalami perubahan sebagai yang telah distandarkan.
Kegunaan Air
Air dibutuhkan untuk bermacam-macam keperluan. Kualitas air untuk keperluan minum berbeda dengan untuk keperluan industri.
Kepadatan Penduduk
Kepadatan penduduk dalam suatu lokasi tertentu turut mempengaruhi tingkat pencemaran lingkungan. Hal ini dikaitkan dengan tingkat kesadaran penduduk dalam memelihara lingkungan yang sehat dan bersih. Buangan air rumah tangga, padatan berupa sampah yang
dibuang ke sungai, air cucian kamar mandi maupun buangan tinja akan mempengaruhi tingkatkandungan BOD, COD dan bakteri coli dalam air sungai. Semakin padat penduduk suatu lingkungan semakin banyak limbah yang harus dikendalikan.
Lingkungan
Lingkungan seperti hutan, perkebunan, peternakan, alam yang
573 luas mempengaruhi kondisi badan penerima. Dalam keadaan
tertentu badan-badan pencemar akan ternetralisasi secara alamiah. Lintasan air sungai yang panjang dengan turbulensi yang keras akan mempengaruhi tingkat penyerapan oksigen ke dalam air. Adanya sinar matahari yang langsung masuk dalam badan penerima terjadi fotosintesa hingga sejumlah bakteri tertentu akan terancam. Adanya tumbuhan tertentu dalam badan penerima akan menetralisasi senyawa pencemar sebab sesuai dengan kondisi pertumbuhan.
Phosphat dalam air buangan menyuburkan tumbuh-tumbuhan tertentu, tapi tumbuhan itu sendiri akan merusak lingkungan.
Volume Air Limbah
Seluruh air dalam pabrik pada umumnya ditampung dalam saluran-saluran untuk kemudian disatukan dalam saluran yang lebih besar. Banyak saluran dan volume saluran disesuaikan dengan keadaan pabrik dan jumlah air yang akan dibuang. Volume air limbah akan menentukan konsentrasi bahan pencemar. Bahan pencemar dari suatu pabrik tergantung kepada banyaknya bahan-bahan yang terbuang. Dengan
asumsi bahwa semua terkendali dengan baik. Pengendalian hanya terbatas pada bahan pencemar yang tidak dapat dihindari, maka konsentrasi bahan pencemaran telah dapat diperkirakan jumlahnya. Penambahan volume air hanya menyebabkan konsentrasi turun. Dengan perkataan lain bahwa akibat pengenceran otomatis menyebabkan konsentrasi turun.
Frekuensi Pembuangan Limbah
Limbah dari suatu pabrik ada kalanya tidak tetap volumenya. Untuk beberapa pabrik tertentu limbah airnya mengalir dalam jumlah yang sama setiap hari, tetapi ada lain yang mengalirkan limbah pada jam-jam (waktu) tertentu bahkan pada satu minggu atau satu bulan. Bercampurnya limbah air pada jumlah yang berbeda-beda mengakibatkan konsentrasi bahan pencemar pada badan penerima bervariasi. Kondisi ini menunjukkan bahwa standar kualitas lingkungan juga mengalami perubahan sesuai dengan limbah yang diterima.
Dari uraian di atas, kualitas limbah dapat diukur pada dua tempat yaitu, pada titik sebelum dan sesudah bercampur dengan badan penerima. Penetapan kualitas limbah ini perlu mendapat penegasan karena beberapa hal yang mendasari yaitu: bila limbah tidak dibuang ke tempat umum dibuatkan tempat tersendiri dan tidak bercampur dengan badan penerima. Biasanya hal seperti ini terjadi untuk limbah air.

by joko akhiriyanto
Read more...

Pretreatment pada pengolahan limbah cair

| | 0 komentar

Pretreatment pada pengolahan limbah cair


Screen / Saringan-Saringan biasanya dipasang pada awal pemasukan pada unit pengolahan limbah cair, gunanya untuk menyaring sampah padat yang terikut dalam aliran air limbah. Bentuk dan fungsinya sangat beragam tergantung dari padatan yang akan disaring. Type screen dibedakan dari cara pembersihannya, ada yang pembersihannya dengan manual dan ada yang secara mekanik dengan motor listrik.


Grease Trap & Grit Chamber (Perangkap Lemak Dan Penangkap Padatan)

Pemisahan grit pada instalasi pengolahan limbah cair adalah untuk menjaga/melindungi pompa dan peralatan mekanik lainnya dari kerusakan karena tergerus oleh padatan inorganik (grit) seperti pasir, kerikil, lumpur, pecahan kaca, logam, dlsb.Selain merusak peralatan mekanik, padatan inorganik yang tidak dapat diuraikan oleh bakteri/ microorganisme akan membentuk endapan yang akan membebani settling tank, unit aerasi dan digester,dimana pada unit tersebut memerlukan pengurasan berkala.

Bangunan untuk memisahankan grit dari bahan organik lainnya disebut sebagai Grit chamber, dimana sistim pemisahan grit nya adalah dengan mengatur kecepatan aliran/velocity nya atau dengan aerasi, teknik baru yang lebih efisien adalah dengan sistim hydrocyclone.Bahan padat yang dapat terurai (biodegreable) seperti kotoran manusia tidak boleh mengendap disini. Karena itu retention time pada grit chamber relatif singkat hanya berkisar antara 3 ski 5 menit.

Lemak pada limbah cair terdiri dari bermacam bentuk material antara lain lemak, malam/lilin, fatic-acid, sabun, mineral-oil dan material non-volatil lainnya. Lemak sebetulnya bisa diuraikan oleh bakteri/microorganisme, tetapi karena lemak ini mudah mengapung dan dipisahkan dari air limbah, maka dengan menangkap/menghilangkan lemak sebelum masuk pada unit pengolahan, akan mengurangi beban/load organik yang ada,sehingga berdampak pada desain dan besaran konstruksi.

Bangunan penangkap lemak sering juga disebut sebaga;GreaseTrap, Prinsip dari konstruksi ini adalah bahan yang ringan(minyak, lemak,dst) akan mengapung jika kondisi airnya tenang,sehingga biasanya konstruksi grease trap adalah bak dengan sekat sekat untuk menghilangkan turbulensi.Melihat dari kedua sifat yang ada tersebut yaitu bahan yangringan (minyak, lemak, dlsb.)

akan mengapung, sedangkan bahan yang berat (pasir, kerikil, pecahan kaca, logam, dlsb.) akan mengendap, maka akan lebih menghemat jika hisa menggabungkan konstruksi Grit Chamber dan Grease Trap dalam satu konstruksi.Untuk menghindari agar bahan yang biodegreable tidak
mengendap disini dianjurkan agar dasar dari konstruksi ini dibuat tirus hingga kecepatan aliran pada bagian bawah lebih besar.

Hal penting yang perlu dilakukan adalah pembersihan dari lemak dan bahan padat lainnya secara periodik, dengan kata lain sungguhpun konstruksi penangkap lemak. dan bahan padat telah dibuat, tetapi bila tidak dilakukan pembersihan secara periodik maka manfaatnya sama sekali tidak ada.Periode pembersihan ini sangat tergantung pada jumlah bahan padat dan lemak yang terikut.Tetapi rata rata sekali tiap minggu sampai maksimum sekali tiap bulan merupakan praktek yang lazim.

Contoh sketsa konstruksi gabungan Grit chamber dan Grease trap dapat dilihat pada gambar berikut ini:




Ukuran diatas hanya bersifat illustratif. Ukuran sebenarnya perlu dihitung dan disesuaikan dengan jumlah aliran limbah yang akan ditangani.



Contoh soal :
Diketahui :Limbah dari asrama Perawat RS berjumlah 40 m3 per hari. Limbah tersebut dari WC penghuni asrama tersebut dan juga berbagai kegiatan yang dilakukan seperti dapur dan cusian Total produksi
limbah per hari 40 m3, waktu produksi limbah rata rata 8 jam dalam satu hari
Direncanakan untuk membangun suatu grease trap dan grit chamber sebelum limbah tersebut masuk ke unit pengoiahan.Berapa kira kira volume dari konstruksi tersebut ??

Perhitungan :
Flow rate adalah = 40 m3 / 8 jam = 5 m3/jam = 500J liter / 60 menit
= 83.33 liter / menit Retention time dalam konstruksi diambil 3 menit
Maka volume konstruksi yang dibutuhkan = 83.33 It/menit x 3 menit= 250 liter atau 0.25 m3.Dimensi kita tentukan dulu lebarnya, misal dasar trapesium 20 cm an,lebar = 60 cm, dan panjang nya 2x lebar = 120 cm.Karena kemiringan 60° maka tinggi trapesium = 34,64 cm bulatkan jadi 35 cm.

Volume trapesium (A) = 0.35) 1.2 0.168 3 2
(0.6 0.2 x x m Volume chamber = Vol (A) + vol (B) Vol (B) = 0.25 m3 – 0.168 m3 (0.6 x 1.2 x T) = 0.082 m3 TB (tinggi B) = 0.114 m = 11.4 cm (+Freeboard ±20cm) = 30 cm

Tinggi total (A) + (B) = 35 + 30 = 65 cm

Posting By : Panji Kusuma Yudha
Read more...

Equalisasi pada pengolahan limbah cair

| | 0 komentar

Equalisasi pada pengolahan limbah cair

Equalisasi bukan merupakan suatu proses pengoiahan tetapi merupakan suatu cara / teknik untuk meningkatkan efektivitas dari proses pengolahan selanjutnya. Keluaran dari bak equalisasi adalah adalah parameter operasional bagi unit pengolahan sellanjutnya seperti flow, level/derajat kandungan polutant, temperatur, padatan, dsb.



Kegunaan dari equalisasi adalah :

1.Membagi dan meratakan volume pasokan (influent) untuk masuk pada proses treatment.
2.Meratakan variabel & fluktuasi dari beban organik untuk menghindari shock loading pada sistem pengolahan biologi
3.Meratakan pH untuk meminimalkan kebutuhan chemical pada proses netralisasi.
4.Meratakan kandungan padatan (SS, koloidal, dls b) untuk meminimalkan kebutuhan chemical pada proses koagulasi dan flokulasi.Sehingga dilihat dari fungsinya tersebut, unit bak equalisasi sebaiknya dilengkapi dengan mixer, atau secara sederhana konstruksi/peletakan dari pipa inlet dan outlet diatur sedemikian rupa sehingga menimbulkan efek turbulensi!mixing.Idealnya pengeluaran (discharge) dari equalisasi dijaga konstan selama periode 24 jam, biasanya dengan cara pemompaan maupun cara cara lain yang memungkinkan.
Menghitung volume bak equalisasi

Untuk menentukan kebutuhan volume bagi bak equalisasi, perlu diketahui dahulu flow patern dari discharge limbah yang ada, seperti kita ketahui sangatlah jarang dan langka discharge limbah yang konstan dari waktu ke waktu, karena jika discharge dan bebannya sudah konstar maka tidaklah perlu dibuat bak equalisasi. Untuk mendapatkan data flow patern perlu dilakukan pengukuran debit limbah secara periodik (misalnya setiap 30 menit atau setiap jam) dalam kurun waktu tertentu, tergantung pada proses yang ada ( 24 jam, 1 minggu, 1 bulan. dlsb.) artinya adalah : ada siklus proses yang selesai dalam 1 hari dan diulang ulang lagi proses tersebut pada hari berikutnya, untuk kasus tersebut pengukuran debit limbah cukup dilakukan selama 24 jam, tetapi ada kasus lain dimana siklus prosesing memakan waktu sampai beberapa hari, artinya proses hari ini berbeda dengan proses esok harinya dan berbeda juga pada hari lusanya dar, seterusnya, sehingga pada kasus ini perlu diamati terus minimal selama 1 siklus.
Contoh soal

Dari pengukuran debit limbah yang dilakukan siswa SMK Kimia di pabrik kulit Mandala, didapat data seperti tertulis pada tabel dibawah ini, desainlah suatu bak equalisasi dimana limbah dari bak terseaut akan dialiran ke unit pengolahan biologi selanjutnya secara konstan (dipompa) dalam 24 jam.




Vol. limbah per hari = 180,12 m3 Dibagi / dikeluarkan secara kontinyu dalam waktu 24 jam,Debit pengeluaran (pompa) = 180,12 : 24 = 7.5 m3/jam




Volume bak equalisasi = V1 + V2= 40m3+13r13= 53 m3
untuk keamanan tambah 10 % 53 m3 x 1,1 = 58.3 m3

Bentuk bak bisa dibuat persegi, bulat maupun oval dengan konstruksi pasangan batu atau beton bertulang.Misal bak berbentuk persegi dengan Panjang = 5 m Lebar = 4,5 m Dalam = 2,6 m
Maka, volume = 5 x 4,5 x 2,6 = 58,5 m3 (siip)

Untuk kedalaman ditambah free-board 30 cm, sehingga total kedalaman konstruksi bak menjadi 2,9 m Gambar Sketsa dari perhitungan di atas dapat dilihat pada:



Posting By : Panji Kusuma Yudha
Read more...

Rabu, 02 Desember 2009

| | 0 komentar

Read more...

Minggu, 29 November 2009

| | 0 komentar

Industri Versus Lingkungan

Pencemaran terjadi akibat bahan beracun dan berbahaya dalam limbah lepas masuk lingkungan hingga terjadi perubahan kualitas lingkungan, Sumber bahan beracun dan berbahaya dapat diklasifikasikan:

1. industri kimia organik maupun anorganik
2. penggunaan bahan beracun dan berbahaya sebagai bahan baku atau bahan penolong
3. peristiwa kimia-fisika, biologi dalam pabrik.

Lingkungan sebagai badan penerima akan menyerap bahan tersebut sesuai dengan kemampuan. Sebagai badan penerima adalah udara, permukaan tanah, air sungai, danau dan lautan yang masingmasing mempunyai karakteristik berbeda.

Air di suatu waktu dan tempat tertentu berbeda karakteristiknya dengan air pada tempat yang sama dengan waktu yang berbeda,Air berbeda karakteristiknya akibat peristiwa alami serta pengaruh faktor lain.

Kemampuan lingkungan untuk memulihkan diri sendiri karena interaksi pengaruh luar disebut daya dukung lingkungan. Daya dukung lingkungan antara tempat satu dengan tempat yang lain berbeda, Komponen lingkungan dan faktor yang mempengaruhinya turut menetapkan nilai daya dukung.

Bahan pencemar yang masuk ke dalam lingkungan akan bereaksi dengan satu atau lebih komponen lingkungan. Perubahan komponen lingkungan secara fisika, kimia dan biologis sebagai akibat dari bahan pencemar, membawa perubahan nilai lingkungan yangdisebut perobahan kualitas.

Limbah yang mengandung bahan pencemar akan merubah kualitas lingkungan bila lingkungan tersebut tidak mampu memulihkan kondisinya sesuai dengan daya dukung yang ada padanya, Oleh karena itu penting diketahui sifat limbah dan komponen bahan pencemar yang terkandung.

Pada beberapa daerah di Indonesia sudah ditetapkan nilai kualitas limbah air dan udara. Namun baru sebagian kecil. Sedangkan kualitas lingkungan belum ditetapkan. Perlunya penetapan kualitas lingkungan mengingat program industrialisasi sebagai salah satu sektor yang memerankan andil besar terhadap perekonomlan dan kemakmuran bagi suatu bangsa.

Penggunaan air yang berlebihan, sistem pembuangan yang belum memenuhi syarat, karyawan yang tidak terampil, adalah faktor yang harus dipertimbangkan dalam mengidentifikasikan sumber pencemar.

Produk akhir, seperti pembungkusan, pengamanan tabung dan kotak, sistem pengangkutan, penyimpanan, pemakaian dengan aturan dan persyaratan yang tidak memenuhi ketentuan merupakan sumber pencemar juga.
by joko akhiriyanto
Read more...

Industri Versus Lingkungan

| | 0 komentar

Pencemaran terjadi akibat bahan beracun dan berbahaya dalam limbah lepas masuk lingkungan hingga terjadi perubahan kualitas lingkungan, Sumber bahan beracun dan berbahaya dapat diklasifikasikan:

1. industri kimia organik maupun anorganik
2. penggunaan bahan beracun dan berbahaya sebagai bahan baku atau bahan penolong
3. peristiwa kimia-fisika, biologi dalam pabrik.

Lingkungan sebagai badan penerima akan menyerap bahan tersebut sesuai dengan kemampuan. Sebagai badan penerima adalah udara, permukaan tanah, air sungai, danau dan lautan yang masingmasing mempunyai karakteristik berbeda.

Air di suatu waktu dan tempat tertentu berbeda karakteristiknya dengan air pada tempat yang sama dengan waktu yang berbeda,Air berbeda karakteristiknya akibat peristiwa alami serta pengaruh faktor lain.

Kemampuan lingkungan untuk memulihkan diri sendiri karena interaksi pengaruh luar disebut daya dukung lingkungan. Daya dukung lingkungan antara tempat satu dengan tempat yang lain berbeda, Komponen lingkungan dan faktor yang mempengaruhinya turut menetapkan nilai daya dukung.

Bahan pencemar yang masuk ke dalam lingkungan akan bereaksi dengan satu atau lebih komponen lingkungan. Perubahan komponen lingkungan secara fisika, kimia dan biologis sebagai akibat dari bahan pencemar, membawa perubahan nilai lingkungan yangdisebut perobahan kualitas.

Limbah yang mengandung bahan pencemar akan merubah kualitas lingkungan bila lingkungan tersebut tidak mampu memulihkan kondisinya sesuai dengan daya dukung yang ada padanya, Oleh karena itu penting diketahui sifat limbah dan komponen bahan pencemar yang terkandung.

Pada beberapa daerah di Indonesia sudah ditetapkan nilai kualitas limbah air dan udara. Namun baru sebagian kecil. Sedangkan kualitas lingkungan belum ditetapkan. Perlunya penetapan kualitas lingkungan mengingat program industrialisasi sebagai salah satu sektor yang memerankan andil besar terhadap perekonomlan dan kemakmuran bagi suatu bangsa.

Penggunaan air yang berlebihan, sistem pembuangan yang belum memenuhi syarat, karyawan yang tidak terampil, adalah faktor yang harus dipertimbangkan dalam mengidentifikasikan sumber pencemar.

Produk akhir, seperti pembungkusan, pengamanan tabung dan kotak, sistem pengangkutan, penyimpanan, pemakaian dengan aturan dan persyaratan yang tidak memenuhi ketentuan merupakan sumber pencemar juga.
Read more...

Pencemaran dan Lingkungan

| | 0 komentar

Kata Kunci: kawasan industri, Pembangunan industri, pemukiman industri kecil, Pencemaran Lingkungan, pengembangan wilayah, pertumbuhan industri, potensi sumber daya alam, zona industri
Ditulis oleh Suparni Setyowati Rahayu pada 08-05-2009

Pembangunan industri di Indonesia berdasarkan konsepsi Wilayah Pusat Pertumbuhan Industri yang mencerminkan keterpaduan dan keterkaitan serta bertumpu pada potensi sumber daya alam dan energi. Atas dasar ini dilakukan dua macam pendekatakan yaitu pendekatan sektoral dan pendekatan regional. Pendekatan sektoral dilakukan melalui pembangunan industri dasar sedangkan pendekatan regional dilakukan melalui pengembangan wilayah industri, meliputi wilayah pusat pertumbuhan industri, zona industri, kawasan industri, pemukiman industri kecil dan sentra-sentra industri kecil.

Pada dasarnya pengembangan wilayah adalah usaha pembangunan daerah yang memperhitungkan keterpaduan program sektoral seperti pertanian, pertambangan, aspirasi masyarakat dan potensi loin dengan memperhatikan kondisi lingkungan.

Pembangunan industri dasar berorientasi pada lokasi tersedianya sumber pembangunan lain. Pada umumnya lokasi industri dasar belum tersentuh pembangunan, baik dalam arti kualitatif maupun kuantitatif bahkan masih bersifat alami. Adanya pembangunan industri ini akan mengakibatkan perubahan lingkungan seperti berkembangnya jaringan infra struktur dan akan menumbuhkan kegiatan lain untuk menunjang kegiatan yang ada.
Pembangunan di satu pihak menunjukkan dampak positif terhadap lingkungan dan masyarakat seperti tersedianya jaringan jalan, telekomunikasi, listrik, air, kesempatan kerja serta produknya sendiri memberi manfaat bagi masyarakat luas dan juga meningkatkan pendapatan bagi daerah yang bersangkutan. Masyarakat sekitar pabrik langsung atau tidak langsung dapat menikmati sebagian dari hasil pembangunannya. Di pihak lain apabila pembangunan ini tidak diarahkan akan menimbulkan berbagai masalah seperti konflik kepentingan, pencemaran lingkungan, kerusakan, pengurasan sumberdaya alam, masyarakat konsumtif serta dampak sosial lainnya yang pada dasarnya merugikan masyarakat.

Pembangunan industri pada gilirannya membentuk suatu lingkungan kehidupan zona industri. Dalam zona industri kehidupan masyarakat makin berkembang; zona industri secara bertahap dilengkapi pembangunan sektor ekonomi lain seperti peternakan, perikanan, home industry, dan pertanian sehingga diperlukan rencana pembangunan wilayah berdasarkan konsep tata ruang.

Tujuan rencana tata ruang ini untuk meningkatkan asas manfaat berbagai sumberdaya yang ada dalam lingkungan seperti meningkatkan fungsi perlindungan terhadap tanah, hutan, air, flora, fungsi industri, fungsi pertanian, fungsi pemukiman dan fungsi lain.

Peningkatan fungsi setiap unsur dalam lingkungan artinya meningkatkan dampak positif semaksimum mungkin sedangkan dampak negatif harus ditekan sekecil mungkin. Konsepsi pembangunan wilayah dengan dasar tata ruang sangat dibutuhkan dalam upaya pembangunan industri berwawasan lingkungan.
by joko akhiriyanto
Read more...

Industri dan Klasifikasinya

| | 0 komentar

Industri diklasifikasi menjadi 3 bagian, yaitu:

1.Industri dasar atau hulu

2.Industri hilir

3.Industri kecil

Sesuai dengan program Pemerintah untuk lebih memudahkan dalam pembinaannya, industri dasar dirinci menjadi Industri Kimia Dasar dan Industri Mesin dan Logam, Dasar, sedangkan industri hilir sering juga disebutkan dengan Aneka Industri.

Selain penggolongan tersebut industri juga diklasifikasikan menjadi 3, yaitu: industri primer, industri yang mengubah bahan mentah menjadi setengah jadi; industri sekunder, adalah industri yang merubah barang setengah jadi menjadi barang jadi; industri tertier, sebagian besar meliputi industri jasa ataupun industri lanjutan yang mengolah bahan industri sekunder.

Ciri masing-masing industri adalah sebagai berikut: Industri hulu mempunyai ciri-ciri padat modal, berskala besar, menggunakan teknologi maju dan teruji. Lokasinya selalu dipilih dekat dengan bahan baku yang mempunyai sumber energi sendiri, dan pada umumnya lokasi ini belum tersentuh pembangunan. Karena itu diperlukan perencanaan yang matang beserta tahapan pembangunan, mulai dari perencanaan sampai operasional.

gb7181

Dari sudut lain diperlukan pengaturan tata ruang, rencana pemukiman, pengembangan kehidupan perekonomian, pencegahan kerusakan lingkungan dan lain-lain. Pembangunan industri ini akan mengakibatkan perubahan lingkungan baik dari aspek sosial ekonomi dan budaya dan pencemaran.

Terjadi perubahan tatanan sosial, pola konsumsi, bentang alam, tingkah laku, habitat binatang, permukaan tanah, sumber air, kemunduran kualitas udara, pengurangan sumberdaya alam lainnya.

Industri hilir. Industri ini sebagai perpanjangan proses dari industri hulu. Pada umumnya industri ini mengolah bahan setengah jadi menjadi barang jadi. Lokasinya selalu diupayakan dekat pasar. Menggunakan teknologi madya dan teruji, Banyak menyerap tenaga kerja.

Industri kecil. Industri ini banyak berkembang di pedesaan maupun di kota. Industri kecil peralatannya sederhana. Walaupun hakekat produksi sama dengan industri hilir, tapi sistem pengolahannya lebih sederhana. Sistem tata letak pabrik, pengolahan limbah belum mendapat perhatian,Industri ini banyak menyerap tenaga kerja.
by joko akhiriyanto
Read more...

Definisi Kimia Industri

| | 0 komentar

Kata Kunci: dekomposisi, Kimia Industri, Pengangkutan bahan, Pengecilan ukuran, Pengubahan kondisi operasi, Perubahan fase, Proses Pemisahan, satuan operasi, satuan proses
Ditulis oleh Suparni Setyowati Rahayu pada 05-05-2009

Kimia Industri mencakup hal yang cukup luas. Pada bagian ini akan diperkenalkan mengenai Kimia Industri, yang akan dimulai berdasarkan akar katanya, yaitu Kimia dan Industri. Selanjutnya pada sub bab selanjutnya akan dibahas mengenai sistem manajemen dalam suatu industri, khususnya industri besar dimana pada bagian ini akan terlihat pembagian pelaksanaan tugas mulai dari tingkat pelaksana yang dalam hal ini diduduki oleh seseorang dengan klasifikasi pendidikan minimal Sekolah Menengah Kejuruan Teknik / STM sampai dengan tingkat manajer puncak dengan klasifikasi pendidikan minimal sarjana. Dengan demikian diharapkan dapat sebagai gambaran kompetensi yang diperlukan apabila seseorang bekerja pada bidang industri kimia.

Pengenalan tentang “Kimia-Industri” diawali dengan pembahasan berdasarkan asal katanya, yang dimulai dari kata “Industri” dan dilanjutkan dengan kata “Kimia”. Kata Industri merupakan suatu proses yang mengubah bahan-baku menjadi produk yang berguna atau mempunyai nilai-tambah, serta produk tersebut dapat digunakan secara langsung oleh konsumen sebagai pengguna akhir dan produk tersebut disebut dengan “produk-akhir”, selain itu produk dari industri tersebut dapat juga digunakan sebagai bahan baku oleh industri lain, yang disebut juga sebagai “produk-antara”. Kata produk dalam Kimia Industri tentunya melibatkan Industri yang menghasilkan zat kimia. Sedangkan bahan baku yang diproses dalam industri tersebut dapat diperoleh melalui proses penambangan, petrokimia, pertanian atau sumber-sumber lain. Hubungan antara bahan-baku dengan produk baik produk-akhir maupun produk-antara dapat dilihat pada gambar 1.1, dimana produk yangdihasilkan dari industri merupakan produk yang diperlukan oleh manusia dalam hal ini produk tersebut mempunyai nilai tambah.

gb-11

Sedangkan kata “kimia” dapat diartikan sebagai suatu proses dimana sebelum dan sesudah proses terjadi perubahan “identitas kimia” yang ditandai dengan perubahan unsur-unsur penyusunnya dan atau perubahan massa molekulnya ataupun struktur molekulnya, dimana proses tersebut pada umumnya disebut dengan “reaksi-kimia”. Bahan sebelum terjadinya proses reaksi kimia disebut dengan “reaktan”, hasil dari reaksi kimia tersebut disebut dengan “produk”, sedangkan proses reaksi-kimia yang memisahkan sebelum dan sesudah proses menggunakan simbol panah, sebagai contoh proses reaksi kimia pada persamaan [1.1] berikut:

pr-11

Pada persamaan [1.1], terjadi perubahan “identitas-kimia” dari reaktan cumene menjadi produk benzene dan propylene. Perubahan identitas kimia tersebut ditandai dengan berubahnya rumus molekul yang akan diikuti dengan perubahan Berat Molekulnya. Reaksi-kimia atau perubahan identitas kimia seperti pada reaksi [1.1] disebut dengan proses dekomposisi yaitu perubahan reaktan menjadi produk yang rumus molekul lebih sederhana. Kebalikan dari proses dekomposisi adalah kombinasi yaitu penggabungan reaktan menjadi produk dengan berat molekul yang lebih besar, jadi dalam hal ini, cumene sebagai produk, didapat dengan jalan mereaksikan Benzene dan Propylene.

Akan tetapi ada juga perubahan identitas-kimia yang tidak diikuti dengan perubahan Berat Molekul, sebagaimana yang terjadi pada persamaan reaksi [1.2].

pr-12

Pada reaksi persamaan [1.2] tidak terjadi perubahan berat molekul, akan tetapi terjadi perubahan konfigurasi dari molekulnya.

Peristiwa perubahan identitas-kimia atau reaksi kimia dapat terjadi pada kondisi fisis tertentu, misalnya suhu, tekanan ataupun pada fasa tertentu. Sebagai contoh proses pembuatan asam nitrat secara komersial dilaksanakan dari Oksida Nitrik (NO), sebagai bahan-baku, bahan-baku tersebut diproduksi dari oksidasi amonia pada fase gas, dengan reaksi sebagai mana ditunjukkan pada persamaan [1.3].

pr-13

Kondisi operasi reaktan masuk pada reaktor (alat yang merupakan tempat terjadi reaksi kimia) pada tekanan 8,2 atm dan suhu 227oC dengan komposisi 15% mol amonia pada udara. Apabila kondisi operasi tidak memenuhi, maka reaksi tidak akan terjadi. Sedangkan keadaan mula-mula dari udara sebagai bahan baku atau reaktan pada persamaan [1.3] berada pada kondisi tekanan 1 atm dan suhu kamar (sekitar 27oC). Oleh karenanya, sebelum masuk (umpan) pada reaktor, maka udara harus diubah kondisi operasinya dulu dengan jalan menaikkan suhu dan tekanannya sehingga sesuai dengan kondisi operasi yang diperlukan untuk reaksi, yaitu 8,2 atm dan 227oC. Perubahan kondisi operasi ini dikatagorikan dengan “perubahan kondisi-fisis”. Dimana perubahan kondisi fisis ini tidak terjadi perubahan identitas kimia. Untuk merubah kondisi-fisis dari suatu bahan (zat) diperlukan peralatan (equipment), seperti peralatan “penukar-kalor” (heat exchanger) yang digunakan untuk merubah suhu, “kompresor” alat untuk menaikkan tekanan material fase gas dan lain-lain yang dibahas lebih lanjut pada bab-bab berikutnya.

Karena luasnya yang harus ditangani dalam bidang Kimia Industri, kemudian beberapa guru besar dibidang Teknik Kimia dari Massachusetts Institute of Technology yang bekerja dibidang Industri pada tahun 1910 mengelompokan bidang ini menjadi dua bagian besar, yaitu “Satuan-Proses” (Unit Process) dan “Satuan-Operasi” (Unit Operation), (Shreve, 1967). Permasalahan yang berhubungan dengan perubahan-perubahan yang bersifat fisika dalam Industri Kimia dikatagorikan dalam “Satuan-Operasi”, sedangkan perubahan yang bersifat kimia dimasukkan dalam kelompok “Satuan-Proses”.
by joko akhiriyanto
Read more...

Minggu, 22 November 2009

Metoda pemisahan standar

| | 0 komentar

Tidak ada cara unik untuk memisahkan campuran menjadi komponennya. Satu-satunya cara adalah menggunakan perbedaan sifat kimia dan fisika masing-masing komponen. Titik kritisnya Anda dapat menggunakan perbedaan sifat yang sangat kecil.
a. Filtrasi
Filtrasi, yakni proses penyingkiran padatan dari cairan, adalah metoda pemurnian cairan dan larutan yang paling mendasar. Filtrasi tidak hanya digunakan dalam skala kecil di laboratorium tetapi juga di skala besar di unit pemurnian air. Kertas saring dan saringan digunakan untuk menyingkirkan padatan dari cairan atau larutan. Dengan mengatur ukuran mesh, ukuran partikel yang disingkirkan dapat dipilih.
Biasanya filtrasi alami yang digunakan. Misalnya, sampel yang akan disaring dituangkan ke corong yang di dasarnya ditaruh kertas saring. Fraksi cairan melewati kertas saring dan padatan yang tinggal di atas kertas saring. Bila sampel cairan terlalu kental, filtrasi dengan penghisapan digunakan. Alat khusus untuk mempercepat filtrasi dengan memvakumkan penampung filtrat juga digunakan.
Filtrasi dengan penghisapan tidak cocok bila cairannya adalah pelarut organik mudah menguap. Dalam kasus ini tekanan harus diberikan pada permukaan cairan atau larutan (filtrasi dengan tekanan).
b. Adsorpsi
Tidak mudah menyingkirkan partikel yang sangat sedikit dengan filtrasi sebab partikel semacam ini akan cenderung menyumbat penyaringnya. Dalam kasus semacam ini direkomendasikan penggunaan penyaring yang secara selektif mengadsorbsi sejumlah kecil pengotor. Bantuan penyaring apapun akan bisa digunakan bila saringannya berpori, hidrofob atau solvofob dan memiliki kisi yang kaku. Celit, keramik diatom dan tanah liat teraktivasi sering digunakan. Karbon teraktivasi memiliki luas permukaan yang besar dan dapat mengadsorbsi banyak senyawa organik dan sering digunakan untuk menyingkirkan zat yang berbau (dalam banyak kasus senyawa organik) dari udara atau air. Silika gel dapat mengadsorbsi air dan digunakan meluas sebagai desikan.
Lapisan-lapisan penyaring dalam unit pengolah air terdiri atas lapisan-lapisan material. Lapisan penyaring yang mirip untuk penggunaan domestik sekarang dapat diperoleh secara komersial.
c. Rekristalisasi
Sebagai metoda pemurnian padatan, rekristalisasi memiliki sejarah yang panjang seperti distilasi. Walaupun beberapa metoda yang lebih rumit telah dikenalkan, rekristalisasi adalah metoda yang paling penting untuk pemurnian sebab kemudahannya (tidak perlu alat khusus) dan karena keefektifannya. Ke depannya rekristalisasi akan tetap metoda standar untuk memurnikan padatan.
Metoda ini sederhana, material padayan ini terlarut dalam pelarut yang cocok pada suhu tinggi (pada atau dekat titik didih pelarutnya) untuk mendapatkan larutan jenuh atau dekat jenuh. Ketika larutan panas pelahan didinginkan, kristal akan mengendap karena kelarutan padatan biasanya menurun bila suhu diturunkan. Diharapkan bahwa pengotor tidak akan mengkristal karena konsentrasinya dalam larutan tidak terlalu tinggi untuk mencapai jenuh.
Walaupun rekristalisasi adalah metoda yang sangat sederhana, dalam praktek, bukan berarti mudah dilakukan. Saran-saran yang bermanfaat diberikan di bawah ini.
Saran untuk membantu rekristalisasi:
1. Kelarutan material yang akan dimurnikan harus memiliki ketergantungan yang besar pada suhu. Misalnya, kebergantungan pada suhu NaCl hampir dapat diabaikan. Jadi pemurnian NaCl dengan rekristalisasi tidak dapat dilakukan.
2. Kristal tidak harus mengendap dari larutan jenuh dengan pendinginan karena mungkin terbentuk super jenuh. Dalam kasus semacam ini penambahan kristal bibit, mungkin akan efektif. Bila tidak ada kristal bibit, menggaruk dinding mungkin akan berguna.
3. Untuk mencegah reaksi kimia antara pelarut dan zat terlarut, penggunaan pelarut non-polar lebih disarankan. Namun, pelarut non polar cenderung merupakan pelarut yang buruk untuk senyawa polar. Kit a harus hati-hati bila kita menggunakan pelarut polar. Bahkan bila tidak reaksi antara pelarut dan zat terlarut, pembentukan kompleks antara pelarut-zat terlarut.
4. Umumnya, pelarut dengan titik didih rendah umumnya lebih diinginkan. Namun, sekali lagi pelarut dengan titik didih lebih rendah biasanya non polar. Jadi, pemilihan pelarut biasanya bukan masalah sederhana.
d. Distilasi
Distilasi adalah seni memisahkan dan pemurnian dengan menggunakan perbedaan titik didih. Distilasi memiliki sejarah yang panjang dan asal distilasi dapat ditemukan di zaman kuno untuk mendapatkan ekstrak tumbuhan yang diperkirakan dapat merupakan sumber kehidupan. Teknik distilasi ditingkatkan ketika kondenser (pendingin) diperkenalkan. Gin dan whisky, dengan konsentrasi alkohol yang tinggi, didapatkan dengan teknik yang disempurnakan ini.
Pemisahan campuran cairan menjadi komponen dicapai dengan distilasi fraksional. Prinsip distilasi fraksional dapat dijelaskan dengan menggunakan diagram titik didih-komposisi (Gambar 12. 1). Dalam gambar ini, kurva atas menggambarkan komposisi uap pada berbagai titik didih yang dinyatakan di ordinat, kurva bawahnya menyatakan komposisi cairan. Bila cairan dengan komposisi l2 dipanaskan, cairan akan mendidih pada b1. Komposisi uap yang ada dalam kesetimbangan dengan cairan pada suhu b1 adalah v1. Uap ini akan mengembun bila didinginkan pada bagian lebih atas di kolom distilasi (Gambar 12.2), dan embunnya mengalir ke bawah kolom ke bagian yang lebih panas. Bagian ini akan mendidih lagi pada suhu b2 menghasilkan uap dengan komposisi v2. Uap ini akan mengembun menghasilkan cairan dengan komposisi l3.
Jadi, dengan mengulang-ulang proses penguapan-pengembunan, komposisi uap betrubah dari v1 ke v2 dan akhirnya ke v3 untuk mendapatkan konsentrasi komponen A yang lebih mudah menguap dengan konsentrasi yang tinggi.

Gambar 12.1 Diagram titik didih- komposisi larutan ideal campuran cauran A dan B. Komposisi cairan berubah dari l1 menjadi l2 dan akhirnya l3. Pada setiap tahap konsentrasi komponen B yang kurang mudah menguap lebih tinggi daripada di fasa uapnya.Contoh soal 12.1 Distilasi fraksional Tekanan uap benzen dan toluen berturut-turut adalah 10,0 x 104 N m-2 dan 4,0 x 104 N m-2, pada80°C. Hitung fraksi mol toluen dalam uap yang berada dalam kesetimbangan dengan cairan yang terdiri atas 0,6 mol toluen dan 0,4 molar benzen. Hitung fraksi mol toluen x dalam fas uap.Jawab Dengan bantuan hukum Raoult (bab 7.4(b)), komposisi uapnya dapat dihitung sebagai berikut. Jumlah mol toluen di uap /jumlah mol benzen di uap = [0,60 x (4,0 x 104)]/[0,40 x (10,0 x 104)] = 0,60.
Fraksi mol toluen di uap x adalah: x/(1 – x) = 0,60; x = 0,60 / (1,0 + 0,60) = 0,375.
Bila dibandingkan dengan komposisi cairan, konsentrasi toluen di fasa uap lebih besar menunjukkan bahwa adanya pengaruh distilasi fraksional.
Kolom distilasi yang panjang dari alat distilasi digunakan di laboratorium (Gambar 12.2) memberikan luas permukaan yang besar agar uap yang berjalan naik dan cairan yang turun dapat bersentuhan. Di puncak kolom, termometer digunakan untuk mengukur suhu fraksi pertama yang kaya dengan komponen yang lebih mudah menguap A. Dengan berjalannya distilasi, skala termometer meningkat menunjukkan bahwa komponen B yang kurang mudah menguap juga ikut terbawa. Wadah penerima harus diubah pada selang waktu tertentu.
Bila perbedaan titik didih A dan B kecil, distilasi fraksional harus diulang-ulang untuk mendapatkan pemisahan yang lebih baik. Produksi minyak bumi tidak lain adalah distilasi fraksional yang berlangsung dalam skala sangat besar.

e. Ekstraksi
Ekstraksi adalah teknik yang sering digunakan bila senyawa organik (sebagian besar hidrofob) dilarutkan atau didispersikan dalam air. Pelarut yang tepat (cukup untuk melarutkan senyawa organik; seharusnya tidak hidrofob) ditambahkan pada fasa larutan dalam airnya, campuran kemudian diaduk dengan baik sehingga senyawa organik diekstraksi dengan baik. Lapisan organik dan air akan dapat dipisahkan dengan corong pisah, dan senyawa organik dapat diambil ulang dari lapisan organik dengan menyingkirkan pelarutnya. Pelarut yang paling sering digunakan adalah dietil eter C2H5OC2H5, yang memiliki titik didih rendah (sehingga mudah disingkirkan) dan dapat melarutkan berbagai senyawa organik.
Ekstraksi bermanfaat untuk memisahkan campuran senyawa dengan berbagai sifat kimia yang berbeda. Contoh yang baik adalah campuran fenol C6H5OH, anilin C6H5NH2 dan toluen C6H5CH3, yang semuanya larut dalam dietil eter. Pertama anilin diekstraksi dengan asam encer. Kemudian fenol diekstraksi dengan basa encer. Toluen dapat dipisahkan dengan menguapkan pelarutnya. Asam yang digunakan untuk mengekstrak anilin ditambahi basa untuk mendaptkan kembali anilinnya, dan alkali yang digunakan mengekstrak fenol diasamkan untuk mendapatkan kembali fenolnya.
Bila senyawa organik tidak larut sama sekali dalam air, pemisahannya akan lengkap. Namun, nyatanya, banyak senyawa organik, khususnya asam dan basa organik dalam derajat tertentu larut juga dalam air. Hal ini merupakan masalah dalam ekstraksi. Untuk memperkecil kehilangan yang disebabkan gejala pelarutan ini, disarankan untuk dilakukan ekstraksi berulang. Anggap anda diizinkan untuk menggunakan sejumlah tertentu pelarut. Daripada anda menggunakan keseluruhan pelarut itu untuk satu kali ekstraksi, lebih baik Anda menggunakan sebagian-sebagian pelarut untuk beberapa kali ekstraksi. Kemudian akhirnya menggabungkan bagian-bagian pelarut tadi. Dengan cara ini senyawa akan terekstraksi dengan lebih baik. Alasannya dapat diberikan di bawah ini dengan menggunakan hukum partisi.
Perhatikan senyawa organik yang larut baik dalam air dan dalam dietil eter ditambahkan pada campuran dua pelarut yang tak saling campur ini. Rasio senyawa organik yang larut dalam masingmasing pelarut adalah konstan. Jadi,
ceter / cair = k (konstan) (12.1)
ceter dan cair adalah konsentrasi zat terlarut dalam dietil eter dan di air. k adalah sejenis konstanta kesetimbangan dan disebut koefisien partisi. Nilai k bergantung pada suhu.
Contoh soal 12.2
Efisiensi ekstraksi
Koefisien partisi k (untuk dietil eter dan air; ceter / cair) senyawa organik S adalah 40,0 pada suhu kamar. Andaikan anda mengekstraksi S dengan 50 cm3 dietil eter dari larutan 5,0 g S dalam 1 dm3 air. Hitung jumlah S yang terekstraksi bila Anda (1) menggunakannya dalam satu kali ekstraksi (2) dua kali ekstraksi (masing-masing 25 cm3).
Jawab
(1) Jumlah S terekstraksi, x1, dihitung sebagai berikut. k = ceter / cair = (x1/ 50,0) / (5,0 – x1) / 1000 = 40,0 x1 = 3,33 (g)
(2) Jumlah S terekstraksi, y1 dan y2, dalam tiap ekstraksi, dihitung sebagai berikut
k = ceter / cair = (y1/ 25,0) / (5,0 – y1) / 1000 = 40,0 y1 = 2,50 (g) k = ceter / cair = (y2/ 25,0) / (2,5 – y2) / 1000 = 40,0 y2 = 1,25 (g)
∴ y1 + y2 = 2,50 + 1,25 = 3,75 (g)
Jelas bahwa ekstraksi lebih menguntungkan bila dilakukan dengan berulang.
Bagaimana hukum partisi bekerja bila terdapat dua senyawa yang akan diekstraksi dalam larutan? Andaikan dua senyawa , 10,0 g A dan 10,0 g B, dilarutkan sejumlah cukup dalam air yang cukup. Koefisien partisi k = ceter / cair = 10,0 untuk A dan 0,10 untuk B.
Ekstraksi pertama dilakukan dengan volume dietil eter yang sama (seperti larutannya). Hasilnya adalah sebagai berikut.

Lapisan eter dipisahkan dan lapisan air diekstraksi lagi dengan volume dietil eter yang sama. Hasilnya adalah sebagai berikut.

Jelas bahwa konsentrasi A dalam lapisan air akan menurun dengan pengulangan ekstraksi. Contoh soal 12.3 Hukum partisi Konfirmasikan diskusi di atas dengan hukum partisi. Jawab Jumlah A dan B yang diekstraksi oleh ekstraksi pertama dan kedua adalah berturut-turut a1, b1 dan
a2, b2,. Hasil ekstraksi pertama adalah. untuk A; k = ceter / cair = a1 / (10,0 – a1) = 10,0 ∴ a1 = 9,09 (g) untuk B; k = ceter / cair = b1 / (10,0 – b1) = 0,10 ∴ b1 = 0,909 (g)
Hasil ekstraksi kedua adalah untuk A; k = ceter / cair = a2 / (10,0 – a2) = 10,0 ∴ a2 = 0,83 (g) untuk B; k = ceter / cair = b2 / (10,0 – b2) = 0,10 ∴ b1 = 0,83 (g)

by : joko akhiriyanto
Read more...

Kromatografi Kolom

| | 0 komentar

Bagian ini menunjukkan bagaimana prinsip yang sama yang digunakan dalam kromatografi lapis tipis yang dapat diterapkan pada skala besar untuk pemisahan campuran dalam kromatografi kolom. Kolom kromatografi seringkali digunakan untuk memurnikan senyawa di laboratorium.
Pelaksanaan kromatografi kolom

Kolom

Dalam kromatografi lapis tipis, fase diam adalah lapisan tipis jel silika atau alumina pada sebuah lempengan gelas, logam atau plastik. Kolom kromatografi berkerja berdasarkan skala yang lebih besar menggunakan material terpadatkan pada sebuah kolom gelas vertikal.

Berbagai ukuran kolom kromatografi digunakan dan jika anda membuka link pada halaman Kimia Organik dari situs Universitas Colorado, anda akan menemukan foto dari bermacam-macam kolom. Dalam laboratorium sekolah, seringkali dengan mudah digunakan buret biasa sebagai kromatografi kolom.

Penggunaan kolom

Anggaplah anda akan memisahkan campuran dari dua senyawa yang berwarna, yaitu kuning dan biru. Warna campuran yang tampak adalah hijau.

Anda akan membuat larutan jenuh dari campuran dengan menggunakan pelarut yang lebih disukai dalam kolom.

Pertama anda membuka kran penutup untuk membiarkan pelarut yang sudah berada dalam kolom mengering sehingga material terpadatkan rata pada bagian atas, dan kemudian tambahkan larutan secara hati-hati dari bagian atas kolom. Lalu buka kran kembali sehingga campuran berwarna akan diserap pada bagian atas material terpadatkan, sehingga akan tampak seperti gambar dibawah ini:

Selanjutnya tambahkan pelarut baru melalui bagian atas kolom, cegah sedapat mungkin jangan sampai merusak material terpadatkan dalam kolom. Lalu buka kran, supaya pelarut dapat mengalir melalui kolom, kumpulkan dalam satu gelas kimia atau labu dibawah kolom. Karena pelarut mengalir kontinyu, anda tetap tambahkan pelarut baru dari bagian atas kolom sehingga kolom tidak pernah kering.

Gambar berikut menunjukkan perubahan yang mungkin terjadi sejalan dengan perubahan waktu.

Penjelasan tentang apa yang terjadi

Ini mengasumsikan bahwa anda telah membaca penjelasan tentang apa yang terjadi pada kromatografi lapis tipis. Jika belum, ikuti link awal pada bagian atas halaman dan kembali pada bagian ini dan selanjutnya.

Senyawa biru lebih polar daripada senyawa kuning dan memungkinkan mempunyai kemampuan berikatan dengan hidrogen. Anda dapat mengatakan ini karena senyawa biru tidak bergerak secara sangat cepat melalui kolom. Itu berarti bahwa senyawa biru harus dijerap secara kuat pada jel silika atau alumina dibanding dengan senyawa kuning. Karena kurang polar, senyawa kuning menghabiskan waktu dalam pelarut, sehingga keluar dari kolom lebih cepat.

Proses pencucian senyawa melalui kolom menggunakan pelarut dikenal sebagai elusi. Pelarut disebut sebagai eluen.
Apakah anda hanya ingin mengumpulkan senyawa biru saja?

Sudah waktunya untuk mencuci senyawa biru melalui kecepatan bergeraknya pada waktunya! Namun, tidak ada alasan mengapa anda tidak dapat mengganti pelarut selama elusi.

Anggaplah anda menggantikan pelarut yang anda telah digunakan selama ini dengan pelarut yang lebih polar, setelah seluruh senyawa kuning selesai terkumpulkan. Ini akan mempunyai dua pengaruh, keduanya akan mempercepat senyawa biru melalui kolom.
· Pelarut polar akan bersaing untuk mendapatkan ruang pada jel silika atau alumina dengan senyawa biru. Beberapa ruang untuk sementara dipergunakan oleh molekul-molekul pelarut pada permukaan fase diam, tidak menyediakan molekul-molekul biru untuk melekat dan ini akan cenderung menjaga pergerakannya dalam pelarut.
· Akan ada atraksi yang lebih besar antara molekul-molekul pelarut polar dan molekul biru yang polar. Kecenderungan ini akan menarik molekul-molekul biru menempel pada fase diam kembali pada larutan.
Pengaruh total yaitu dengan bertambahnya kepolaran pelarut, senyawa biru akan menghabiskan waktu dalam larutan dan karenanya akan bergerak lebih cepat.
Lalu mengapa tidak menggunakan alternatif ini dalam tempat pertama? Jawabannya adalah jika senyawa-senyawa dalam campuran bergerak secara sangat cepat melalui kolom dari awal, anda mungkin tidak akan mendapatkan pemisahan yang baik
Bagaimana jika campuran yang anda miliki tidak berwarna?

Jika anda akan menggunakan kromatografi kolom untuk memurnikan produk organik, mungkin produk yang anda harapkan akan menjadi produk yang tidak berwarna, meskipun satu atau lebih dari pengotor berwarna. Mari kita berasumsi kasus terburuk yaitu segala sesuatunya tidak berwarna.

Bagaimana anda bisa mengetahui bahwa substansi yang anda diinginkan telah mencapai bagian bawah kolom?

Ini bukan merupakan pekerjaan yang cepat dan mudah! Apa yang akan anda kumpulkan dan apa yang keluar dari bawah kolom dalam seluruh rangkaian pipa yang berlabel. Bagaimana besar setiap sampel akan jelas tergantung pada bagaimana besar kolom yaitu-anda mungkin mengumpulkan 1 cm3 atau 5 cm3 sampel atau apapun itu besarnya yang sesuai.

Anda kemudian akan mengambil setetes dari setiap larutan dan membuatnya ke dalam kromatografi lapis tipis. Anda menempatkan tetesan pada garis dasar bersama dengan setetes senyawa murni dari senyawa yang sementara anda buat. Dengan mengulangi pekerjaan ini, anda dapat mengidentifikasi sampel yang mana yang dikumpulkan pada bawah kolom yang mengandung produk yang diinginkan dan hanya dibutuhkan.

Sekali anda mengetahui prosedur ini, anda dapat menggabungkan seluruh sampel yang yang mengandung produk senyawa murni dan menghilangkan pelarutnya. (Bagaimana anda memisahkan pelarut dari produk, tidak langsung relevan dengan topik ini dan akan bervariasi dan tergantung pada sifat dasar senyawanya. Saya tidak akan menyamaratakannya.)

by Joko akhiriyanto
Read more...