Minggu, 13 September 2009

Teori Kuantum Ikatan Kimia

| | 0 komentar

Teori Kuantum Ikatan Kimia

Metoda Heitler dan London
Sebagaimana dipaparkan di bagian 2.3, teori Bohr, walaupun merupakan model revolusioner, namun gagal menjelaskna mengapa atom membentuk ikatan. Teori Lewis-Langmuir tentang ikatan kovalen sebenarnya kualitatif, dan gagal memberikan jawaban pada pertanyaan fundamental mengapa atom membentuk ikatan, atau mengapa molekul lebih stabil daripada dua atom yang membentuknya.
Masalah ini diselesaikan dengan menggunakan mekanika kuantum (mekanika gelombang). Segera setelah mekanika kuantum dikenalkan, fisikawan Jerman Walter Heitler (1904-1981) dan fisikawan Jerman/Amerika Fritz London (1900-1954) berhasil menjelaskan pembentukan molekul hidrogen dengan penyelesaian persamaan gelombang sistem yang terdiri atas dua atom hidrogen dengan pendekatan. Sistemnya adalah dua proton dan dua elektron (gambar 3.5(a)). Mereka menghitung energi sistem sebagai fungsi jarak antar atom dan mendapatkan bahwa ada lembah dalam yang berkaitan dengan energi minimum yang diamati dalam percobaan (yakni pada jarak ikatan) tidak dihasilkan. Mereka mengambil pendekatan lain: mereka menganggap sistem dengan elektron yang posisinya dipertukarkan (gambar 3.5(b)), dan menghitung ulang dengan asumsi bahwa dua sistem harus menyumbang sama pada pembentukan ikatan. Mereka mendapatkan kemungkinan pembentukan ikatan meningkat, dan hasil yang sama dengan hasil percobaan diperoleh.
Metoda Heitler dan London adalah yang pertama berhasil menjelaskan dengan kuantitatif ikatan kovalen. Metoda ini memiliki potensi untuk menjelaskan tidak hanya ikatan yang terbentuk dalam molekul hidroegn, tetapi ikatan kimia secara umum.

b. Pendekatan ikatan valensi
Marilah kita perhatikan metoda Heitler dan London dengan detail. Bila dua atom hidrogen dalam keadaan dasar pada jarak tak hingga satu sama lain, fungsi gelombang sistemnya adalah 1s1(1)1s2(2) (yang berkaitan dengan keadaan dengan elektron 1 berkaitan dengan proton 1 dan elektron 2 berhubungan dengan proton 2 sebagaimana diperlihtakna di gambar 3.5(a) (atau 1s1(2)1s2(1) yang berkaitan dengan keadaan dimana elektron 2 terikat di proton 1 dan elektron 1 berikatan dengan proton 2 sebagaimana diperlihatkan gambar 3.5(b)). Bila dua proton mendekat, menjadi sukar untuk membedakan dua proton. Dalam kasus ini, sistemnya dapat didekati dengan mudah kombinasi linear dua fungsi gelombang. Jadi,

Ψ+ = N+[]1s1(1)1s2(2) +1s1(2)1s2(1)[] (3.1)
Ψ-= N-[]1s1(1)1s2(2) – 1s1(2)1s2(1)[] (3.2)

dengan N+ dan N- adalah konstanta yang menormalisasi fungsi gelombangnya. Dengan menyelesaikan persamaan ini, akan diperoleh nilai eigen E+ dan E- yang berkaitan dengan gambar. 3.6(a) dan 3.6(b).
Metoda yang dipaparkan di atas disebut dengan metoda ikatan valensi (valence-bond/VB). Premis metoda VB adalah molekul dapat diungkapkan dengan fungsi-fungsi gelombang atom yang menyusun molekul. Bila dua elektron digunakan bersama oleh dua inti atom, dan spin kedua elektronnya antiparalel, ikatan yang stabil akan terbentuk.

c. Pendekatan orbital molekul
Metoda VB dikembangkan lebih lanjut oleh ilmuwan Amerika termasuk John Clarke Slater (1900-1978) dan Linus Carl Pauling (1901-1994). Namun, kini metoda orbital molekul (molecular orbital, MO) jauh lebih populer.
Orbital ini melingkupi seluruh molekul, dan disebut dengan fungsi orbital molekul, atau secara singkat orbital molekul. Seperti juga, orbital satu elektron untuk atom disebut dengan fungsi orbital atom atau secara singkat orbital atom. Metoda untuk memberikan pendekatan orbital molekul dengan melakukan kombinasi linear orbital atom disebut dengan kombinasi linear orbital atom (linear combination of atomic orbital, LCAO).
Read more...

Struktur Senyawa Organik

| | 0 komentar

Struktur senyawa anorganik

Senyawa Organik

http://www.chem-is-try.org/wp-content/migrated_images/artikel/alkaloid.jpgDalam dunia medis dan kimia organik, istilah alkaloid telah lama menjadi bagian penting dan tak terpisahkan dalam penelitian yang telah dilakukan selama ini, baik untuk mencari senyawa alkaloid baru ataupun untuk penelusuran bioaktifitas. Senyawa alkaloid merupakan senyawa organik terbanyak ditemukan di alam. Hampir seluruh alkaloid berasal dari tumbuhan dan tersebar luas dalam berbagai jenis tumbuhan. Secara organoleptik, daun-daunan yang berasa sepat dan pahit, biasanya teridentifikasi mengandung alkaloid. Selain daun-daunan, senyawa alkaloid dapat ditemukan pada akar, biji, ranting, dan kulit kayu.

Berdasarkan literatur, diketahui bahwa hampir semua alkaloid di alam mempunyai keaktifan biologis dan memberikan efek fisiologis tertentu pada mahluk hidup. Sehingga tidaklah mengherankan jika manusia dari dulu sampai sekarang selalu mencari obat-obatan dari berbagai ekstrak tumbuhan. Fungsi alkaloid sendiri dalam tumbuhan sejauh ini belum diketahui secara pasti, beberapa ahli pernah mengungkapkan bahwa alkaloid diperkirakan sebagai pelindung tumbuhan dari serangan hama dan penyakit, pengatur tumbuh, atau sebagai basa mineral untuk mempertahankan keseimbangan ion.

Alkaloid secara umum mengandung paling sedikit satu buah atomnitrogen yang bersifat basa dan merupakan bagian dari cincin heterosiklik. Kebanyakan alkaloid berbentuk padatan kristal dengan titik lebur tertentu atau mempunyai kisaran dekomposisi. Alkaloid dapat juga berbentuk amorf atau cairan. Dewasa ini telah ribuan senyawa alkaloid yang ditemukan dan dengan berbagai variasi struktur yang unik, mulai dari yang paling sederhana sampai yang paling sulit.

Dari segi biogenetik, alkaloid diketahui berasal dari sejumlah kecil asam amino yaitu ornitin dan lisin yang menurunkan alkaloid alisiklik,fenilalanin dan tirosin yang menurunkan alkaloid jenis isokuinolin, dan triftopan yang menurunkan alkaloid indol. Reaksi utama yang mendasari biosintesis senyawa alkaloid adalah reaksi mannich antara suatu aldehida dan suatu amina primer dan sekunder, dan suatu senyawa enol atau fenol. Biosintesis alkaloid juga melibatkan reaksi rangkap oksidatif fenol dan metilasi. Jalur poliketida dan jalur mevalonat juga ditemukan dalam biosintesis alkaloid.

Berikut adalah beberapa contoh senyawa alkaloid yang telah umum dikenal dalam bidang farmakologi :

Senyawa Alkaloid
(Nama Trivial)

Aktivitas Biologi

Nikotin

Stimulan pada syaraf otonom

Morfin

Analgesik

Kodein

Analgesik, obat batuk

Atropin

Obat tetes mata

Skopolamin

Sedatif menjelang operasi

Kokain

Analgesik

Piperin

Antifeedant (bioinsektisida)

Quinin

Obat malaria

Vinkristin

Obat kanker

Ergotamin

Analgesik pada migrain

Reserpin

Pengobatan simptomatis disfungsi ereksi

Mitraginin

Analgesik dan antitusif

Vinblastin

Anti neoplastik, obat kanker

Saponin

Antibakteri

Tantangan Penelitian

Tantangan dalam penelitian di bidang alkaloid, semakin lama semakin menarik dan dengan tingkat kesukaran yang rumit. Hal ini didasarkan pada fenomena bahwa jumlah alkaloid dalam tumbuhan berada dalam kadar yang sangat sedikit (kurang dari 1%) tetapi kadar alkaloid diatas 1% juga seringkali dijumpai seperti pada kulit kina yang mengandung 10-15% alkaloid dan pada Senecio riddelii dengan kadar alkaloid hingga 18%. Selain kadar yang kecil, alkaloid juga harus diisolasi dari campuran senyawa yang rumit. Proses isolasi, pemurnian, karakterisasi, dan penentuan struktur ini membutuhkan pengetahuan dan keterampilan khusus yang tentunya memerlukan waktu yang lama untuk mendalaminya.

Tantangan berikutnya dalam penelitian setelah ditemukan senyawa alkaloid murni dan diketahui strukturnya, adalah dengan melakukan uji aktivitas biologi terutama untuk aplikasi farmakologi dan bioinsektisida. Setelah diketahui aktivitas biologinya, kemudian dilanjutkan dengan mempelajari studi molekular (uji klinis) lebih lanjut senyawa tersebut bagi organisme (terutama manusia). Seandainya alkaloid yang diteliti, memiliki kelayakan sebagai obat, maka tantangan lain bagi para peneliti adalah mensintesis senyawa tersebut, terutama untuk mencari jalur sintesis yang sederhana dan murah, sehingga dengan sintesis dapat menyediakan pasokan alternatif obat semacam itu yang sering sukar diperoleh dari sumber alam.

Tantangan dalam bidang pengembangan ilmu alkaloid tidak berhenti sampai disini saja, adanya resistensi atau adanya efek ketagihan terhadap obat, menyebabkan para peneliti kembali disibukkan untuk mencari obat lain, yang salah satunya adalah dengan meneliti turunan-turunan senyawa yang berkhasiat tersebut.

Penutup

Penelitian di bidang kimia alkaloid tiap tahun selalu berkembang pesat. Indonesia dengan kekayaan alamnya yang melimpah, merupakan gudang bagi tersedianya senyawa-senyawa alkaloid yang berkhasiat, yang siap untuk dieksplorasi dan dieksploitasi oleh para ilmuwan. Dalam usaha mengeksplorasi dan memanfaatkan senyawa alkaloid ini, perlu ditopang oleh paling tidak oleh tiga pihak yang berkerjasama yaitu pemerintah, dunia industri, dan para ilmuwan. Untuk itu perlu adanya kesamaan persepsi bahwa penelitian adalah investasi. Dengan kesamaan persepsi ini, diharapkan penelitian para ilmuwan tidak mentok pada tahap publikasi ilmiah saja tetapi sampai pada paten dan aplikasi langsung bagi masyarakat.


posting by : Sri Mei
Read more...