Minggu, 11 Oktober 2009

Berbagai Kristal

| | 0 komentar

Berbagai kristal
Sampai di sini, kristal telah diklasifikasikan berdasarkan cara penyusunan partikelnya. Kristal juga dapat diklasifikasikan dengan jenis partikel yang menyusunnya atau dengan interaksi yang menggabungkan partikelnya (Tabel 8.2).
Tabel 8.2 Berbagai jenis kristal
logam ionik molekular kovalen
Li 38 LiF 246,7 Ar 1,56 C(intan) 170
Ca 42 NaCl 186,2 Xe 3,02 Si 105
Al 77 AgCl 216 Cl 4,88 SiO2 433
Fe 99 Zn 964 CO2 6,03
W 200 CH4 1,96
Nilai yang tercantum di atas adalah energi yang diperlukan untuk memecah kristal menjadi partikel penyusunnya (atom, ion, atau molekul (dalam kkal mol-1))
a. Kristal logam
Kisi kristal logam terdiri atas atom logam yang terikat dengan ikatan logam. Elektron valensi dalam atom logam mudah dikeluarkan (karena energi ionisasinya yang kecil) menghasilkan kation. Bila dua atom logam saling mendekat, orbital atom terluarnya akan tumpang tindih membentuk orbital molekul. Bila atom ketiga mendekati kedua atom tersebut, interaksi antar orbitalnya terjadi dan orbital molekul baru terbentuk. Jadi, sejumlah besar orbital molekul akan terbentuk oleh sejumlah besar atom logam, dan orbital molekul yang dihasilkan akan tersebar di tiga dimensi.
Karena orbital atom bertumpang tindih berulang-ulang, elektron-elektron di kulit terluar setiap atom akan dipengaruhi oleh banyak atom lain. Elektron semacam ini tidak harus dimiliki oleh atom tertentu, tetapi akan bergerak bebas dalam kisi yang dibentuk oleh atom-atom ini. Jadi, elektron-elektron ini disebut dengan elektron bebas.
Tingginya hantaran panas logam dapat juga dijelaskan dengan elektron bebas ini. Bila salah satu ujung logam dipanaskan, energi kinetik elektron sekitar ujung itu akan meningkat. Peningkatan
Kilap logam diakibatkan oleh sejumlah besar orbital molekul kristal logam. Karena sedemikian banyak orbital molekul, celah energi antara tingkat-tingkat energi itu sangat kecil. Bila permukaan logam disinari, elektron akan mengabsorbsi energi sinar tersebut dan tereksitasi. Akibatnya, rentang panjang gelombang cahaya yang diserap sangat lebar. Bila elektron yang tereksitasi melepaskan energi yang diterimanya dan kembali ke keadaan dasar, cahaya dengan rentang panjang gelombang yang lebar akan dipancarkan, yang akan kita amati sebagai kilap logam.
b. Kristal ionik
Kristal ionik semacam natrium khlorida (NaCl) dibentuk oleh gaya tarik antara ion bermuatan positif dan negatif. Kristal ionik biasanya memiliki titik leleh tinggi dan hantaran listrik yang rendah. Namun, dalam larutan atau dalam lelehannya, kristal ionik terdisosiasi menjadi ion-ion yang memiliki hantaran listrik.
Biasanya diasumsikan bahwa terbentuk ikatan antara kation dan anion. Dalam kristal ion natrium khlorida, ion natrium dan khlorida diikat oleh ikatan ion. Berlawanan dengan ikatan kovalen, ikatan ion tidak memiliki arah khusus, dan akibatnya, ion natrium akan berinteraksi dengan semua ion khlorida dalam kristal, walaupun intensitas interaksi beragam. Demikian juga, ion khlorida akan berinteraksi dengan semua ion natrium dalam kristal.
Susunan ion dalam kristal ion yang paling stabil adalah susunan dengan jumlah kontak antara partikel bermuatan berlawanan terbesar, atau dengan kata lain, bilangan koordinasinya terbesar. Namun, ukuran kation berbeda dengan ukuran anion, dan akibatnya, ada kecenderungan anion yang lebih besar akan tersusun terjejal, dan kation yang lebih kecil akan berada di celah antar anion.
c. Kristal molekular
Kristal dengan molekul terikat oleh gaya antarmolekul semacam gaya van der Waals disebut dengan kristal molekul. Kristal yang didiskusikan selama ini tersusun atas suatu jenis ikatan kimia antara atom atau ion. Namun, kristal dapat terbentuk, tanpa bantuan ikatan, tetapi dengan interaksi lemah antar molekulnya. Bahkan gas mulia mengkristal pada temperatur sangat rendah. Argon mengkristal dengan gaya van der Waaks, dan titik lelehnya -189,2°C. Padatan argon berstruktur kubus terjejal.
Molekul diatomik semacam iodin tidak dapat dianggap berbentuk bola. Walaupun tersusun teratur di kristal, arah molekulnya bergantian (Gambar 8.11). Namun, karena strukturnya yang sederhana, permukaan kristalnya teratur. Ini alasannya mengapa kristal iodin memiliki kilap.

Gambar 8.11 Struktur kristal iodin.
Strukturnya berupa kisi ortorombik berpusat muka.
Molekul di pusat setiap muka ditandai dengan warna lebih gelap.
Pola penyusunan kristal senyawa organik dengan struktur yang lebih rumit telah diselidiki dengan analisis kristalografi sinar-X. Bentuk setiap molekulnya dalam banyak kasus mirip atau secara esensi identik dengan bentuknya dalam fasa gas atau dalam larutan.
d. Kristal kovalen
Banyak kristal memiliki struktur mirip molekul-raksasa atau mirip polimer. Dalam kristal seperti ini semua atom penyusunnya (tidak harus satu jenis) secara berulang saling terikat dengan ikatan kovelen sedemikian sehingga gugusan yang dihasilkan nampak dengan mata telanjang. Intan adalah contoh khas jenis kristal seperti ini, dan kekerasannya berasal dari jaringan kuat yang terbentuk oleh ikatan kovalen orbital atom karbon hibrida sp3 (Gambar 8.12). Intan stabil sampai 3500°C, dan pada temperatur ini atau di atasnya intan akan menyublim.
Kristal semacam silikon karbida (SiC)n atau boron nitrida (BN)n memiliki struktur yang mirip dengan intan. Contoh yang sangat terkenal juga adalah silikon dioksida (kuarsa; SiO2) (Gambar 8.13). Silikon adalah tetravalen, seperti karbon, dan mengikat empat atom oksigen membentuk tetrahedron. Setiap atom oksigen terikat pada atom silikon lain. Titik leleh kuarsa adalah 1700 °C.

Gambar 8.12 Struktur kristal intan
Sudut ∠C-C-C adalah sudut tetrahedral, dan setiap
atom karbon dikelilingi oleh empat atom karbon lain.
e. Kristal cair
Kristal memiliki titik leleh yang tetap, dengan kata laun, kristal akan mempertahankan temperatur dari awal hingga akhir proses pelelehan. Sebaliknya, titik leleh zat amorf berada di nilai temperatur yang lebar, dan temperatur selama proses pelelehan akan bervariasi.
Terdapat beberapa padatan yang berubah menjadi fasa cairan buram pada temperatur tetap tertentu yang disebut temperatur transisi sebelum zat tersebut akhirnya meleleh. Fasa cair ini memiliki sifat khas cairan seperti fluiditas dan tegangan permukaan. Namun, dalam fasa cair, molekul-molekul pada derajat tertentu mempertahankan susunan teratur dan sifat optik cairan ini agak dekat dengan sifat optik kristal. Material seperti ini disebut dengan kristal cair. Molekul yang dapat menjadi kristal cair memiliki fitur struktur umum, yakni molekul-molekul ini memiliki satuan struktural planar semacam cincin benzen.
Terdapat tiga jenis kristal cair: smektik, nematik, dan kholesterik. Hubungan struktural antara kristal padat-smektik, nematik dan kholesterik secara skematik ditunjukkan di Gambar 8.15. Kristal cair digunakan secara luas untuk tujuan praktis semacam layar TV atau jam tangan.

Gambar 8.15 Keteraturan dalam kristal cair. Keteraturan adalm kristal adalah tiga dimensi. Dalam kristal cair smektik dapat dikatakan keteraturannya di dua dimensi, dan di nematik satu dimensi. T adalah temperatur transisi.
Pertanyaan
1. Bagaimana proses terjadinya kilap logam ?
Jawab : Kilap logam diakibatkan oleh sejumlah besar orbital molekul kristal logam. Karena banyak orbital molekul, celah energi antara tingkat-tingkat energi itu sangat kecil Bila permukaan logam disinari, elektron akan mengabsorbsi energi sinar tersebut dan tereksitasi. Akibatnya, rentang panjang gelombang cahaya yang diserap sangat lebar. Bila elektron yang tereksitasi melepaskan energi yang diterimanya dan kembali ke keadaan dasar, cahaya dengan rentang panjang gelombang yang lebar akan dipancarkan, yang akan kita amati sebagai kilap logam.
2. Jelaskan Susunan ion dalam kristal ion yang paling stabil?
Jawab : jumlah kontak antara partikel bermuatan berlawanan terbesar, atau dengan kata lain, bilangan koordinasinya terbesar. Namun, ukuran kation berbeda dengan ukuran anion, dan akibatnya, ada kecenderungan anion yang lebih besar akan tersusun terjejal, dan kation yang lebih kecil akan berada di celah antar anion.
3. Jelaskan apa itu Intan ?
Jawab : intan adalah contoh khas jenis kristal seperti ini, dan kekerasannya berasal dari jaringan kuat yang terbentuk oleh ikatan kovalen orbital atom karbon hibrida sp3. Intan stabil sampai 3500°C, dan pada temperatur ini atau di atasnya intan akan menyublim.
4. Berikan contoh struktur yang mirip dengan intan?
Jawab : silikon dioksida (kuarsa; SiO2). Silikon adalah tetravalen, seperti karbon, dan mengikat empat atom oksigen membentuk tetrahedron.
5. Jelaskan tentang kristal cair ?
Jawab : Fasa cair memiliki sifat khas cairan seperti fluiditas dan tegangan permukaan. Namun, dalam fasa cair, molekul-molekul pada derajat tertentu mempertahankan susunan teratur dan sifat optik cairan ini agak dekat dengan sifat optik kristal


POsting by : joko Akhiriyanto
Read more...

Keseimbangan Fasa dan Diagram Fasa

| | 0 komentar

Kesetimbangan fasa dan diagram fasa
Selama ini pembahasan perubahan mutual antara tiga wujud materi difokuskan pada keadaan cair. Dengan kata lain, perhatian telah difokuskan pada perubahan cairan dan padatan, dan antara cairan dan gas. Dalam membahas keadaan kritis zat, akan lebih tepat menangani tiga wujud zat secara simultan, bukan membahas dua dari tiga wujud zat.

Diagram fasa. Tm adalah titik leleh normal air, , T3 dan P3 adalah titik tripel, Tb adalah titik didih normal, Tc adalah temperatur kritis, Pc adalah tekanan kritis.
Diagram fasa merupakan cara mudah untuk menampilkan wujud zat sebagai fungsi suhu dan tekanan. Sebagai contoh khas, diagram fasa air diberikan di Gambar 7.5. Dalam diagram fasa, diasumsikan bahwa zat tersebut diisolasi dengan baik dan tidak ada zat lain yang masuk atau keluar sistem.
Pemahaman Anda tentang diagram fasa akan terbantu dengan pemahaman hukum fasa Gibbs, hubungan yang diturunkan oleh fisikawan-matematik Amerika Josiah Willard Gibbs (1839-1903) di tahun 1876. Aturan ini menyatakan bahwa untuk kesetimbangan apapun dalam sistem tertutup, jumlah variabel bebas-disebut derajat kebebasan F- yang sama dengan jumlah komponen C ditambah 2 dikurangi jumlah fasa P, yakni,
F=C+2-P … (7.1)
Jadi, dalam titik tertentu di diagram fasa, jumlah derajat kebebasan adalah 2 – yakni suhu dan tekanan; bila dua fasa dalam kesetimbangan-sebagaimana ditunjukkan dengan garis yang membatasi daerah dua fasa hanya ada satu derajat kebebasan-bisa suhu atau tekanan. Pada ttik tripel ketika terdapat tiga fasa tidak ada derajat kebebasan lagi. Dari diagram fasa, Anda dapat mengkonfirmasi apa yang telah diketahui, dan lebih lanjut, Anda dapat mempelajari apa yang belum diketahui. Misalnya, kemiringan yang negatif pada perbatasan padatan-cairan memiliki implikasi penting sebagaimana dinyatakan di bagian kanan diagram, yakni bila tekanan diberikan pada es, es akan meleleh dan membentuk air. Berdasarkan prinsip Le Chatelier, bila sistem pada kesetimbangan diberi tekanan, kesetimbangan akan bergeser ke arah yang akan mengurangi perubahan ini. Hal ini berarti air memiliki volume yang lebih kecil, kerapatan leb besar daripada es; dan semua kita telah hafal dengan fakta bahwa s mengapung di air.
Sebaliknya, air pada tekanan 0,0060 atm berada sebagai cairan pada suhu rendah, sementara pada suhu 0,0098 °C, tiga wujud air akan ada bersama. Titik ini disebut titik tripel air. Tidak ada titik lain di mana tiga wujud air ada bersama.
Selain itu, titik kritis (untuk air, 218 atm, 374°C), yang telah Anda pelajari, juga ditunjukkan dalam diagram fasa. Bila cairan berubah menjadi fasa gas pada titik kritis, muncul keadaan antara (intermediate state), yakni keadaan antara cair dan gas. Dalam diagram fasa keadaan di atas titik kritis tidak didefinisikan.

POsting by : Panji Kusuma Yudha
Read more...

Struktur Padatan Kristalin

| | 0 komentar

Struktur padatan kristalin
Ditulis oleh Yoshito Takeuchi pada 11-08-2008
a. Susunan terjejal

Banyak senyawa, khususnya kristal logam dan molekular mempunyai sifat umum yang memaksimalkan kerapatannya dengan menyusun partikel-partiklenya serapat mungkin. Sruktur kristal semacam ini disebut dengan struktur terjejal.

Sebagai contoh, perhatikan susunan terjejal kristal logam yang terdiri atas atom sferik (bola). Bola-bola ini disusun dalam lapisan. Lapisan pertama harus disusun seperti gambar 8.4(a) untuk mendapatkan susunan terjejal. Setiap bola di lapisan kedua menempati lubang yang dibentuk oleh tiga bola di lapisan pertama. Ini adalah cara yang paling efisien untuk menggunakan ruang yang tersedia (Gambar 8.4(b)). Ada dua cara untuk meletakkan lapisan ketiganya. Salah satunya adalah dengan meletakkan langsung di atas bola lapisan pertama (Gambar 8.4(c)), dan cara yang kedua adalah dengan meletakkannya di atas lubang lapisan kedua (Gambar 8.4(d)). Untuk mudahnya, cara pertama disebut dengan susunan abab, dan sruktur yang dihasilkan disebut dengan heksagonal terjejal. Cara yang kedua disebut dengan susunan abc dan sruktur yang dihasilkan disebut dengan kubus terjejal.

Susunan terjejal apapun akan memiliki sifat umum: (1) bola-bola itu akan menempati. 74% ruang yang tersedia; (2) setiap bola dikelilingi oleh 12 bola tetangganya; (3) enam bola dari 12 ada di lapis yang sama dan tiga di lapis atasnya dan tiga sisanya dari lapis di bawahnya. Jumlah bola yang beresentuhan dengan bola yang menjadi acuan disebut dengan bilangan koordinasi. Untuk struktur terjejal, bilangan koordinasi adalah 12, yang merupakan bilangan koordinasi maksimum. Dalam kasus ini, empat partikel dimasukkan dalam satu sel satuan.

Gambar 8.4 Struktur terjejal
(a) Satu lapisan khas. Setiap bola dikelilingi oleh 12 bola lain. (b) Lapisan kedua yang mirip dengan lapisan pertama. Setiap bola akan menempati lubang yang terbentuk oleh tiga bola di lapis pertama. (c) setiap bola di lapisan ketiga akan terletak persis di atas lapisan pertama (susunan aba). (d) setiap bola di lapisan ketiga terletak di atas lubang lapisan pertama yang tidak digunaka oleh lapisan kedua (susunan abc).

Perak mengkristal dalam susunan kubus terjejal. Bila kristalnya dipotong seperti ditunjukkan di Gambar 8.5, satu bola akan terletak di pusat setiap muka kubus. Karena satu bola (satu atom) terletak di setiap pusat muka kubus, maka kisi ini disebut dengan kisi berpusat muka.

Gambar 8.5 Kisi kubus berpusat muka
Dalam kasus ini, hubungan antara r, jari-jari bola dan d,
panjang sel satuan, dapat ditentukan dengan teorema Pythagoras.

Latihan 8.1 Kerapatan Logam

Radius atom perak adalah 0,144 nm. Dengan mengetahui bahwa perak berstruktur kubus berpusat muka, hitung kerapatan perak (g/cm3).

Jawab.

Penyusunan atom perak diperlihatkan di gambar 8.5. Anda perlu menentukan volume dan jumlah atom perak dalam satu sel satuan. Karena panjang diagonal adalah 4r, d dapat ditentukan dengan

teorema Pythagoras, d2 + d2 = (4r)2 Jadi : d = r√8 = 0,144√8 = 0,407 nm. Jumlah atom perak dalam satu sel satuan dapat diperoleh dari Gambar 8.5. Terlihat terdapat enam separuh bola dan delapan 1/8 bola. Sehingga totalnya ada 4 bola per sel satuan. Massa atom perak adalah m = 107,9 (g mol-1) / 6,022 x 1023 (atom mol-1) = 1,792 x 10-22 (g atom-1).

Karena kerapatan adalah (massa/volume), maka kerapatan perak dAg = [4.(atom) x 1,792 x 10–22 (g .atom1)]/(0,407 x 10-7)3 (cm3) = 10,63 (g.cm-3). Nilai yang didapat dari percobaan adalah 10,5 (g.cm-3) pada temperatur 20 °C.
b. Kubus berpusat badan

Beberapa logam , seperti logam alkali, mengkristal dalam kisi kubus berpusat badan, yang mengandung bola yang terletak di pusat kubus dan di sudut-sudut kubus sel satuan sebagaimana diperlihatkan di Gambar 8.6. Cara penyusunan ini disebut dengan kisi kubus berusat badan.

Latihan 8.2 Susunan kristal logam

Dengan bantuan gambar 8.6, jawablah: (1) tentukan bilangan koordinasi atom logam di pusat sel satuan (2) berapa bagian bola bola yang terletak di sudut sel satuan (3) tentukan bilangan koordinasi atom logam di sudut .

Jawab.

(1) 8. Bola di pusat dikelilingi delapan bola lain, satu setiap sudut kubus. (2) 1/8. Ada delapan bola (3) 8. Setiap bola di setiap sudut sel satuan hanya bersentuhan dengan delapan bola di pusat sel satuan yang mengelilinginya.

Karena bilangan koordinasinya 8, susunan kubus berpusat badan bukan susunan terjejal.
c. Analisis kristalografi sinar-X

Teknik analisis kristalografi sinar-X pertama dikenalkan di awal abad 20, dan sejak itu telah digunakan dengan meluas untuk penentuan struktur berbagai senyawa. Teknik ini dengan sempurna telah menyelesaikan berbagai masalah yang sebelumnya tidak dapat diselesaikan. Tahap awal dicapai oleh William Henry Bragg (1862-1942), sang ayah, dan William Laurence Bragg (1890-1971), anaknya, yang menentukan struktur garam dan intan.

Hingga beberapa tahun terakhir, analisis kristalografi sinar-X hanya dilakukan para spesialis, yakni kristalografer, apapun molekul targetnya. Sungguh, pengukuran dan pemrosesan data yang diperlukan memerlukan pengetahuan dan pengalaman yang banyak. Namiun kini, berkat perkembangan yang cepat dan banyak dalam bidang hardware maupun software kristalografi sinar-X, pengukuran kristalografi sinar-X telah menjadi mungkin dilakukan dengan training yang lebih singkat. Kini, bahkan kimiawan sintesis yang minat utamanya sintesis dan melakukan analisis kristalografi sinar-X sendiri. Akibatnya molekul target yang dipelajari oleh para spesialis menjadi semakin rumit, dan bahkan struktur protein kini dapat dielusidasi bila massa molekulnya tidak terlalu besar. Kini pengetahuan tentang analisis kristalografi diperlukan semua kimiawan selain NMR (Bab 13.3).

Difraksi cahaya terjadi dalam zat bila jarak antar partikel-partikelnya yang tersusun teratur dan panjang gelombang cahaya yang digunakan sebanding. Gelombang terdifraksi akan saling menguatkan bila gelombangnya sefasa, tetapi akan saling meniadakan bila tidak sefasa. Bila kristal dikenai sinar-X monokromatis, akan diperoleh pola difraksi. Pola difraksi ini bergantung pada jarak antar titik kisi yang menentukan apakah gelombang akan saling menguatkan atau meniadakan.

Gambar 8.7 Kondisi difraksi Bragg.
Difraksi sinar- X oleh atom yang terletak di dua lapis kristal. Bila selisih lintasan optis, xy + yz = 2dsinθ, sama dengan kelipatan bulat panjang gelombang, gelombang tersebut akan saling menguatkan.

Andaikan panjang gelombang sinar-X adalah λ (Gambar 8.7). Bila selisih antara lintasan optik sinar-X yang direfleksikan oleh atom di lapisan pertama dan oleh atom yang ada di lapisan kedua adalah 2dsinθ, gelombang-gelombang itu akan saling menguatkan dan menghasilkan pola difraksi. Intensitas pola difraksi akan memberikan maksimum bila:

nλ = 2dsinθ … (8.1)

Persamaan ini disebut dengan kondisi Bragg.

Kondisi Bragg dapat diterapkan untuk dua tujuan. Bila jarak antar atom diketahui, panjang gelombang sinar-X dapat ditentukan dengan mengukur sudut difraksi. Moseley menggunakan metoda ini ketika ia menentukan panjang gelombang sinar X berbagai unsur. Di pihak lain, bila panjang gelombang sinar-X diketahui, jarak antar atom dapat ditentikan dengan mengukur sudut difraksi. Prinsip inilah dasar analisis kristalografi sinar-X.

Latihan 8.3 Kondisi Bragg

Sinar-X dengan panjang gelombang 0,154 nm digunakan untuk analisis kristal aluminum. Pola difraksi didapatkan pada θ = 19.3°. Tentukan jarak antar atom d, dengan menganggap n = 1.

Jawab

d = nλ/2sinθ = (1 x 0,154)/(2 x 0,3305) = 0,233 (nm)


Posting By : Panji Kusuma YUdha
Read more...

Larutan

| | 0 komentar

Larutan



Dalam kimia, larutan adalah campuran homogen yang terdiri dari dua atau lebih zat. Zat yang jumlahnya lebih sedikit di dalam larutan disebut (zat) terlarut atau solut, sedangkan zat yang jumlahnya lebih banyak daripada zat-zat lain dalam larutan disebut pelarut atau solven. Komposisi zat terlarut dan pelarut dalam larutan dinyatakan dalam konsentrasi larutan, sedangkan proses pencampuran zat terlarut dan pelarut membentuk larutan disebut pelarutan atau solvasi.

Contoh larutan yang umum dijumpai adalah padatan yang dilarutkan dalam cairan, seperti garam atau gula dilarutkan dalam Gas dapat pula dilarutkan dalam cairan, misalnya karbon dioksida atau oksigen dalam air. Selain itu, cairan dapat pula larut dalam cairan lain, sementara gas larut dalam gas lain. Terdapat pula larutan padat, misalnya aloi (campuran logam) dan mineral tertentu.
Daftar isi
[sembunyikan]

* 1 Konsentrasi
* 2 Pelarutan
* 3 Larutan ideal
* 4 Sifat koligatif larutan
* 5 Jenis-jenis larutan
* 6 Referensi
* 7 Lihat pula

[sunting] Konsentrasi

Konsentrasi larutan menyatakan secara kuantitatif komposisi zat terlarut dan pelarut di dalam larutan. Konsentrasi umumnya dinyatakan dalam perbandingan jumlah zat terlarut dengan jumlah total zat dalam larutan, atau dalam perbandingan jumlah zat terlarut dengan jumlah pelarut. Contoh beberapa satuan konsentrasi adalah molar, molal, dan bagian per juta (part per million, ppm). Sementara itu, secara kualitatif, komposisi larutan dapat dinyatakan sebagai encer (berkonsentrasi rendah) atau pekat (berkonsentrasi tinggi).
[sunting] Pelarutan
Ion natrium tersolvasi oleh molekul-molekul air

Molekul komponen-komponen larutan berinteraksi langsung dalam keadaan tercampur. Pada proses pelarutan, tarikan antarpartikel komponen murni terpecah dan tergantikan dengan tarikan antara pelarut dengan zat terlarut. Terutama jika pelarut dan zat terlarut sama-sama polar, akan terbentuk suatu sruktur zat pelarut mengelilingi zat terlarut; hal ini memungkinkan interaksi antara zat terlarut dan pelarut tetap stabil.

Bila komponen zat terlarut ditambahkan terus-menerus ke dalam pelarut, pada suatu titik komponen yang ditambahkan tidak akan dapat larut lagi. Misalnya, jika zat terlarutnya berupa padatan dan pelarutnya berupa cairan, pada suatu titik padatan tersebut tidak dapat larut lagi dan terbentuklah endapan. Jumlah zat terlarut dalam larutan tersebut adalah maksimal, dan larutannya disebut sebagai larutan jenuh. Titik tercapainya keadaan jenuh larutan sangat dipengaruhi oleh berbagai faktor lingkungan, seperti suhu, tekanan, dan kontaminasi. Secara umum, kelarutan suatu zat (yaitu jumlah suatu zat yang dapat terlarut dalam pelarut tertentu) sebanding terhadap suhu. Hal ini terutama berlaku pada zat padat, walaupun ada perkecualian. Kelarutan zat cair dalam zat cair lainnya secara umum kurang peka terhadap suhu daripada kelarutan padatan atau gas dalam zat cair. Kelarutan gas dalam air umumnya berbanding terbalik terhadap suhu.
[sunting] Larutan ideal

Bila interaksi antarmolekul komponen-komponen larutan sama besar dengan interaksi antarmolekul komponen-komponen tersebut pada keadaan murni, terbentuklah suatu idealisasi yang disebut larutan ideal. Larutan ideal mematuhi hukum Raoult, yaitu bahwa tekanan uap pelarut (cair) berbanding tepat lurus dengan fraksi mol pelarut dalam larutan. Larutan yang benar-benar ideal tidak terdapat di alam, namun beberapa larutan memenuhi hukum Raoult sampai batas-batas tertentu. Contoh larutan yang dapat dianggap ideal adalah campuran benzena dan toluena.

Ciri lain larutan ideal adalah bahwa volumenya merupakan penjumlahan tepat volume komponen-komponen penyusunnya. Pada larutan non-ideal, penjumlahan volume zat terlarut murni dan pelarut murni tidaklah sama dengan volume larutan.
[sunting] Sifat koligatif larutan

Larutan cair encer menunjukkan sifat-sifat yang bergantung pada efek kolektif jumlah partikel terlarut, disebut sifat koligatif (dari kata Latin colligare, "mengumpul bersama"). Sifat koligatif meliputi penurunan tekanan uap, peningkatan titik didih, penurunan titik beku, dan gejala tekanan osmotik.
[sunting] Jenis-jenis larutan

Larutan dapat diklasifikasikan misalnya berdasarkan fase zat terlarut dan pelarutnya. Tabel berikut menunjukkan contoh-contoh larutan berdasarkan fase komponen-komponennya.
Contoh larutan Zat terlarut
Gas Cairan Padatan
Pelarut Gas Udara (oksigen dan gas-gas lain dalam nitrogen) Uap air di udara (kelembapan) Bau suatu zat padat yang timbul dari larutnya molekul padatan tersebut di udara
Cairan Air terkarbonasi (karbon dioksida dalam air) Etanol dalam air; campuran berbagai hidrokarbon (minyak bumi) Sukrosa (gula) dalam air; natrium klorida (garam dapur) dalam air; amalgam emas dalam raksa
Padatan Hidrogen larut dalam logam, misalnya platina Air dalam arang aktif; uap air dalam kayu Aloi logam seperti baja dan duralumin


Berdasarkan kemampuannya menghantarkan listrik, larutan dapat dibedakan sebagai larutan elektrolit dan larutan non-elektrolit. Larutan elektrolit mengandung zat elektrolit sehingga dapat menghantarkan listrik, sementara larutan non-elektrolit tidak dapat menghantarkan listrik.

Posting by : Panji Kusuma YUdha
Read more...